Deep supervised fused similarity hashing for cross-modal retrieval

被引:0
|
作者
Ng W.W.Y. [1 ]
Xu Y. [1 ]
Tian X. [2 ]
Wang H. [3 ]
机构
[1] Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou
[2] School of Artificial Intelligence, South China Normal University, Guangzhou
[3] School of Electronics, Electrical Engineering and Computer Science, Queens University Belfast, Belfast
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Common semantic subspace; Cross-modal retrieval; Deep hashing; Fused similarity;
D O I
10.1007/s11042-024-19581-2
中图分类号
学科分类号
摘要
The need for cross-modal retrieval increases significantly with the rapid growth of multimedia information on the Internet. However, most of existing cross-modal retrieval methods neglect the correlation between label similarity and intra-modality similarity in common semantic subspace training, which makes the trained common semantic subspace unable to preserve semantic similarity of original data effectively. Therefore, a novel cross-modal hashing method is proposed in this paper, namely, Deep Supervised Fused Similarity Hashing (DSFSH). The DSFSH mainly consists of two parts. Firstly, a fused similarity method is proposed to exploit the intrinsic inter-modality correlation of data while preserving the intra-modality relationship of data at the same time. Secondly, a novel quantization max-margin loss is proposed. The gap between cosine similarity and Hamming similarity is closed by minimizing this loss. Extensive experimental results on three benchmark datasets show that the proposed method yields better retrieval performance comparing to state-of-the-art methods. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
引用
收藏
页码:86537 / 86555
页数:18
相关论文
共 50 条
  • [1] Supervised Hierarchical Deep Hashing for Cross-Modal Retrieval
    Zhan, Yu-Wei
    Luo, Xin
    Wang, Yongxin
    Xu, Xin-Shun
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3386 - 3394
  • [2] Deep Hashing Similarity Learning for Cross-Modal Retrieval
    Ma, Ying
    Wang, Meng
    Lu, Guangyun
    Sun, Yajun
    IEEE ACCESS, 2024, 12 : 8609 - 8618
  • [3] Hashing for Cross-Modal Similarity Retrieval
    Liu, Yao
    Yuan, Yanhong
    Huang, Qiaoli
    Huang, Zhixing
    2015 11TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2015, : 1 - 8
  • [4] Discriminative deep asymmetric supervised hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Liu, Ziyi
    Xiang, Lun
    Meng, Xiaojing
    Knowledge-Based Systems, 2022, 204
  • [5] Discriminative deep asymmetric supervised hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Liu, Ziyi
    Xiang, Lun
    Meng, Xiaojing
    KNOWLEDGE-BASED SYSTEMS, 2020, 204
  • [6] Deep semantic similarity adversarial hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Xiang, Lun
    Meng, Xiaojing
    NEUROCOMPUTING, 2020, 400 : 24 - 33
  • [7] Deep Self-Supervised Hashing With Fine-Grained Similarity Mining for Cross-Modal Retrieval
    Han, Lijun
    Wang, Renlin
    Chen, Chunlei
    Zhang, Huihui
    Zhang, Yujie
    Zhang, Wenfeng
    IEEE ACCESS, 2024, 12 : 31756 - 31770
  • [8] Discriminative Supervised Hashing for Cross-Modal Similarity Search
    Yu, Jun
    Wu, Xiao-Jun
    Kittler, Josef
    IMAGE AND VISION COMPUTING, 2019, 89 : 50 - 56
  • [9] Supervised Hierarchical Online Hashing for Cross-modal Retrieval
    Han, Kai
    Liu, Yu
    Wei, Rukai
    Zhou, Ke
    Xu, Jinhui
    Long, Kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (04)
  • [10] Supervised Contrastive Discrete Hashing for cross-modal retrieval
    Li, Ze
    Yao, Tao
    Wang, Lili
    Li, Ying
    Wang, Gang
    KNOWLEDGE-BASED SYSTEMS, 2024, 295