Robust and energy-efficient RPL optimization algorithm with scalable deep reinforcement learning for IIoT

被引:0
|
作者
Wang, Ying [1 ]
Li, Yuanyuan [1 ]
Lei, Jianjun [1 ]
Shang, Fengjun [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Industrial Internet of Things; Routing protocol; Deep reinforcement learning; Attention mechanism; WIRELESS SENSOR NETWORKS;
D O I
10.1016/j.comnet.2024.110894
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing complexity and quantity of the Industrial Internet of Things (IIoT) pose new challenges to the traditional routing protocol for low-power and lossy networks (RPL) in terms of dynamic management, data transmission reliability, and energy efficiency optimization. This paper proposes a scalable deep reinforcement learning (DRL) algorithm with a multi-attention actor double critic model for routing optimization (MADC) to meet the requirements of IIoT for efficient and intelligent routing decisions while improving data transmission reliability and energy efficiency. Specifically, MADC employs the centralized training and decentralized execution (CTDE) learning paradigm to decouple the model's training and inference tasks, which reduces the difficulty and computational cost of model learning and improves the training efficiency. In addition, a lightweight actor network based on multi-scale convolutional attention mechanism is designed in MADC, which can provide intelligent and real-time decision-making capabilities for resource-constrained nodes with low computational and storage complexities. Moreover, a scalable critic network utilizing multiple attention mechanisms is proposed. It is not only suitable for dynamic and changing network environments but also can more comprehensively and accurately evaluate local observation states, providing more accurate and efficient guidance for model optimization. Furthermore, MADC incorporates a double critic network architecture to mitigate potential overestimation issues during training, thereby ensuring the model's robustness and reliability. Simulation results demonstrate that MADC outperforms existing RPL optimization algorithms in terms of energy efficiency, data transmission reliability, and adaptability.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An Energy-Efficient Dynamic Offloading Algorithm for Edge Computing Based on Deep Reinforcement Learning
    Zhu, Keyu
    Li, Shaobo
    Zhang, Xingxing
    Wang, Jinming
    Xie, Cankun
    Wu, Fengbin
    Xie, Rongxiang
    IEEE ACCESS, 2024, 12 : 127489 - 127506
  • [2] Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach
    Abedin, Sarder Fakhrul
    Munir, Md Shirajum
    Tran, Nguyen H.
    Han, Zhu
    Hong, Choong Seon
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (09) : 5994 - 6006
  • [3] An Energy-Efficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning
    Shiri, Aidin
    Prakash, Bharat
    Mazumder, Arnab Neelim
    Waytowich, Nicholas R.
    Oates, Tim
    Mohsenin, Tinoosh
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [4] Energy-efficient VM scheduling based on deep reinforcement learning
    Wang, Bin
    Liu, Fagui
    Lin, Weiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 125 : 616 - 628
  • [5] Energy-Efficient IoT Sensor Calibration With Deep Reinforcement Learning
    Ashiquzzaman, Akm
    Lee, Hyunmin
    Um, Tai-Won
    Kim, Jinsul
    IEEE ACCESS, 2020, 8 : 97045 - 97055
  • [6] Energy-efficient AI-based Control of Semi-closed Greenhouses Leveraging Robust Optimization in Deep Reinforcement Learning
    Ajagekar, Akshay
    Mattson, Neil S.
    You, Fengqi
    ADVANCES IN APPLIED ENERGY, 2023, 9
  • [7] Energy-Efficient Ultra-Dense Network With Deep Reinforcement Learning
    Ju, Hyungyu
    Kim, Seungnyun
    Kim, Youngjoon
    Shim, Byonghyo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 6539 - 6552
  • [8] Energy-efficient heating control for smart buildings with deep reinforcement learning
    Gupta, Anchal
    Badr, Youakim
    Negahban, Ashkan
    Qiu, Robin G.
    JOURNAL OF BUILDING ENGINEERING, 2021, 34
  • [9] Deep Reinforcement Learning for Energy-Efficient Power Control in Heterogeneous Networks
    Peng, Jianhao
    Zheng, Jiabao
    Zhang, Lin
    Xiao, Ming
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 141 - 146
  • [10] Energy-Efficient Parking Analytics System using Deep Reinforcement Learning
    Rezaei, Yoones
    Lee, Stephen
    Mosse, Daniel
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 81 - 90