NIERT: Accurate Numerical Interpolation Through Unifying Scattered Data Representations Using Transformer Encoder

被引:0
|
作者
Ding, Shizhe [1 ,2 ]
Xia, Boyang [1 ,2 ]
Ren, Milong [1 ,2 ]
Bu, Dongbo [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Henan Acad Sci, Cent China Artificial Intelligence Res Inst, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpolation algorithm; pre-trained models; scattered data; transformer encoder;
D O I
10.1109/TKDE.2024.3402444
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interpolation for scattered data is a classical problem in numerical analysis, with a long history of theoretical and practical contributions. Recent advances have utilized deep neural networks to construct interpolators, exhibiting excellent and generalizable performance. However, they still fall short in two aspects: 1) inadequate representation learning, resulting from separate embeddings of observed and target points in popular encoder-decoder frameworks and 2) limited generalization power, caused by overlooking prior interpolation knowledge shared across different domains. To overcome these limitations, we present a Numerical Interpolation approach using Encoder Representation of Transformers (called NIERT). On one hand, NIERT utilizes an encoder-only framework rather than the encoder-decoder structure. This way, NIERT can embed observed and target points into a unified encoder representation space, thus effectively exploiting the correlations among them and obtaining more precise representations. On the other hand, we propose to pre-train NIERT on large-scale synthetic mathematical functions to acquire prior interpolation knowledge, and transfer it to multiple interpolation domains with consistent performance gain. On both synthetic and real-world datasets, NIERT outperforms the existing approaches by a large margin, i.e., 4.3 similar to 14.3x lower MAE on TFRD subsets, and 1.7/1.8/8.7x lower MSE on Mathit/PhysioNet/PTV datasets.
引用
收藏
页码:6731 / 6744
页数:14
相关论文
共 50 条
  • [1] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Vianello, Marco
    BIT NUMERICAL MATHEMATICS, 2022, 62 (03) : 773 - 801
  • [2] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Francesco Dell’Accio
    Filomena Di Tommaso
    Najoua Siar
    Marco Vianello
    BIT Numerical Mathematics, 2022, 62 : 773 - 801
  • [3] Numerical cubature on scattered data by adaptive interpolation
    Cavoretto, Roberto
    De Rossi, Alessandra
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Sommariva, Alvise
    Vianello, Marco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [4] Fast and accurate interpolation of large scattered data sets on the sphere
    Cavoretto, Roberto
    De Rossi, Alessandra
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1505 - 1521
  • [5] Learn Dynamic Facial Motion Representations Using Transformer Encoder
    Sun, Zheng
    Sumsion, Andrew
    Torrie, Shad
    Lee, Dah-Jye
    2022 INTERMOUNTAIN ENGINEERING, TECHNOLOGY AND COMPUTING (IETC), 2022,
  • [6] Using scattered data interpolation for radiosity reconstruction
    Hinkenjann, A
    Pietrek, G
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, : 715 - 720
  • [7] Scattered data interpolation using data dependant optimization techniques
    Greiner, G
    Kolb, A
    Riepl, A
    GRAPHICAL MODELS, 2002, 64 (01) : 1 - 18
  • [8] DISC: an adaptive numerical Differentiator by local polynomial Interpolation on multivariate SCattered data
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Vianello, Marco
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 81 - 91
  • [9] Multilevel interpolation of scattered data using H-matrices
    Le Borne, Sabine
    Wende, Michael
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1175 - 1193
  • [10] Scattered data fitting using least squares with interpolation method
    Zhou, Tianhe, 1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):