Observation of converse flexoelectric effect in topological semimetals

被引:0
|
作者
Takahashi, Hidefumi [1 ,2 ,3 ]
Kurosaka, Yusuke [1 ,2 ]
Kimura, Kenta [1 ,2 ]
Nakano, Akitoshi [4 ]
Ishiwata, Shintaro [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Mat Phys, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Ctr Spintron Res Network, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[3] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Spintron Res Network Div, Yamadaoka 2-1, Suita, Osaka 5650871, Japan
[4] Nagoya Univ, Dept Phys, Nagoya 4648602, Japan
关键词
TRANSITION; POLARIZATION;
D O I
10.1038/s43246-024-00677-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A strong coupling between electric polarization and elastic deformation in solids is an important factor in creating useful electromechanical nanodevices. Such coupling is typically allowed in insulating materials with inversion symmetry breaking as exemplified by the piezoelectric effect in ferroelectric materials. Therefore, materials with metallicity and centrosymmetry have tended to be out of scope in this perspective. Here, we report the observation of giant elastic deformation by the application of an alternating electric current in topological semimetals (V,Mo)Te-2, regardless of the centrosymmetry. Considering the crystal and band structures and the asymmetric measurement configurations in addition to the absence of the electromechanical effect in a trivial semimetal TiTe2, the observed effect is discussed in terms of a Berry-phase-derived converse flexoelectric effect in metals. The observation of the flexoelectric effect in topological semimetals paves a way for a new type of nanoscale electromechanical sensors and energy harvesting.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] First observation of the converse flexoelectric effect in bilayer lipid membranes
    Todorov, A.T.
    Petrov, A.G.
    Fendler, J.H.
    Journal of Physical Chemistry, 1994, 98 (12):
  • [2] 1ST OBSERVATION OF THE CONVERSE FLEXOELECTRIC EFFECT IN BILAYER-LIPID MEMBRANES
    TODOROV, AT
    PETROV, AG
    FENDLER, JH
    JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (12): : 3076 - 3079
  • [3] Converse flexoelectric effect in comb electrode piezoelectric microbeam
    Shen, Zhiyuan
    Chen, Wei
    PHYSICS LETTERS A, 2012, 376 (19) : 1661 - 1663
  • [4] Vibration control with the converse flexoelectric effect on the laminated beams
    Fan, Mu
    Tzou, Hornsen
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (17) : 2556 - 2566
  • [5] Converse flexoelectric effect in the SrTiO3 single crystal
    V. G. Zalesskii
    E. D. Rumyantseva
    Physics of the Solid State, 2014, 56 : 1352 - 1354
  • [6] An actuation method by a biconcave beam structure with converse flexoelectric effect
    Wu, Tonghui
    Liu, Kaiyuan
    Zhang, Shuwen
    Ji, Hui
    Xu, Minglong
    Shen, Shengping
    SMART MATERIALS AND STRUCTURES, 2019, 28 (11)
  • [7] Converse flexoelectric effect in the SrTiO3 single crystal
    Zalesskii, V. G.
    Rumyantseva, E. D.
    PHYSICS OF THE SOLID STATE, 2014, 56 (07) : 1352 - 1354
  • [8] Topological magnetotorsional effect in Weyl semimetals
    Liang, Long
    Ojanen, Teemu
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [9] Converse flexoelectric effect in homeotropic nematic layers with asymmetric surface anchoring
    Buczkowska, M.
    LIQUID CRYSTALS, 2012, 39 (07) : 873 - 879
  • [10] Converse flexoelectric effect in a bent-core nematic liquid crystal
    Harden, J.
    Teeling, R.
    Gleeson, J. T.
    Sprunt, S.
    Jakli, A.
    PHYSICAL REVIEW E, 2008, 78 (03):