Mutual information-based radiomic feature selection with SHAP explainability for breast cancer diagnosis

被引:2
|
作者
Oladimeji, Oladosu Oyebisi [1 ,2 ]
Ayaz, Hamail [1 ,2 ]
McLoughlin, Ian [3 ]
Unnikrishnan, Saritha [1 ,2 ]
机构
[1] Atlantic Technol Univ, Math Modelling & Intelligent Syst Hlth & Environm, Sligo F91 YW50, Ireland
[2] Atlantic Technol Univ, Fac Engn & Design, Sligo F91 YW50, Ireland
[3] Atlantic Technol Univ, Dept Comp Sci & Appl Phys, Galway, Ireland
关键词
Radiomics; Explainable AI; Breast cancer; Digital breast tomosynthesis; Machine learning; Classification;
D O I
10.1016/j.rineng.2024.103071
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Breast cancer is a prevalent concern for women globally, with misdiagnosis potentially leading to detrimental outcomes. Early detection is crucial, often reliant on medical imaging analysis. Digital Breast Tomosynthesis (DBT) is a promising modality, addressing limitations of traditional mammograms. However, diagnosing breast cancer involves subjective visual examination, leading to inaccuracies. Radiomics, applied in various imaging modalities such as MRI, and digital mammography, remains underutilized in DBT. This study introduces a Mutual Information-based Radiomic Feature Selection (MIRFS) framework for DBT breast cancer evaluation followed by SHAP explanations. Selected features were assessed using machine learning algorithms, with Random Forest achieving 92% accuracy in lesion classification. MIRFS demonstrates significant performance improvements, addressing subjectivity and enhancing diagnostic accuracy through explainability. SHAP methodology elucidates feature importance, aiding model interpretation. Compared to deep learning methods, MIRFS outperforms both deep learning and existing machine learning approaches, promising advancements in breast cancer diagnosis and treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mutual information-based feature selection for radiomics
    Oubel, Estanislao
    Beaumont, Hubert
    Iannessi, Antoine
    MEDICAL IMAGING 2016: PACS AND IMAGING INFORMATICS: NEXT GENERATION AND INNOVATIONS, 2016, 9789
  • [2] Stopping rules for mutual information-based feature selection
    Mielniczuk, Jan
    Teisseyre, Pawel
    NEUROCOMPUTING, 2019, 358 : 255 - 274
  • [3] Mutual information-based feature selection for multilabel classification
    Doquire, Gauthier
    Verleysen, Michel
    NEUROCOMPUTING, 2013, 122 : 148 - 155
  • [4] A Study on Mutual Information-Based Feature Selection in Classifiers
    Arundhathi, B.
    Athira, A.
    Rajan, Ranjidha
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2016, 2017, 517 : 479 - 486
  • [5] CONDITIONAL DYNAMIC MUTUAL INFORMATION-BASED FEATURE SELECTION
    Liu, Huawen
    Mo, Yuchang
    Zhao, Jianmin
    COMPUTING AND INFORMATICS, 2012, 31 (06) : 1193 - 1216
  • [6] Feature redundancy term variation for mutual information-based feature selection
    Gao, Wanfu
    Hu, Liang
    Zhang, Ping
    APPLIED INTELLIGENCE, 2020, 50 (04) : 1272 - 1288
  • [7] Feature redundancy term variation for mutual information-based feature selection
    Wanfu Gao
    Liang Hu
    Ping Zhang
    Applied Intelligence, 2020, 50 : 1272 - 1288
  • [8] A Fuzzy Mutual Information-based Feature Selection Method for Classification
    Hogue, N.
    Ahmed, H. A.
    Bhattacharyya, D. K.
    Kalita, J. K.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (03) : 355 - 384
  • [9] Study on mutual information-based feature selection for text categorization
    Xu, Yan
    Jones, Gareth
    Li, Jintao
    Wang, Bin
    Sun, Chunming
    Journal of Computational Information Systems, 2007, 3 (03): : 1007 - 1012
  • [10] Mutual information-based feature selection for intrusion detection systems
    Amiri, Fatemeh
    Yousefi, MohammadMahdi Rezaei
    Lucas, Caro
    Shakery, Azadeh
    Yazdani, Nasser
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2011, 34 (04) : 1184 - 1199