Predicting the Distribution Coefficient of Cesium in Solid Phase Groups Using Machine Learning

被引:0
|
作者
Hong, Seok Min [1 ]
Yoon, In-Ho [3 ]
Cho, Kyung Hwa [2 ,4 ]
机构
[1] Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan,689-798, Korea, Republic of
[2] Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan,689-798, Korea, Republic of
[3] Korea Atomic Energy Research Institute, Daejeon, Korea, Republic of
[4] Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan,689-798, Korea, Republic of
来源
SSRN | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Cesium - Forecasting - Forestry - Radioactivity - Radioisotopes - Random forests - Risk assessment - Waste disposal
引用
收藏
相关论文
共 50 条
  • [1] Predicting the distribution coefficient of cesium in solid phase groups using machine learning
    Hong S.M.
    Yoon I.-H.
    Cho K.H.
    Chemosphere, 2024, 352
  • [2] Predicting solid-solid phase transition of quaternary ammonium salts by machine learning
    Li, Xiao
    Li, Ruonan
    Hu, Luoming
    Mao, Lianjing
    Zheng, Tianyu
    Ye, Chunsen
    Sun, Wei
    Zhang, Pengrui
    Sun, Jinhe
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (08) : 3285 - 3292
  • [3] Developing a machine learning-based predictive model for cesium sorption distribution coefficient on crushed granite
    Ma, Funing
    Dai, Zhenxue
    Cai, Fangfei
    Zhang, Xiaoying
    Ma, Yue
    Wang, Dayong
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2025, 283
  • [4] Predicting Recidivism to Drug Distribution using Machine Learning Techniques
    Butsara, Nuttawit
    Athonthitichot, Panchan
    Jodpimai, Pichai
    2019 17TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2019, : 165 - 169
  • [5] Predicting customer satisfaction for distribution companies using machine learning
    Cavalcante Siebert, Luciano
    Bianchi Filho, Jose Francisco
    da Silva Junior, Eunelson Jose
    Yamakawa, Eduardo Kazumi
    Catapan, Angela
    INTERNATIONAL JOURNAL OF ENERGY SECTOR MANAGEMENT, 2021, 15 (04) : 743 - 764
  • [6] Predicting filtration coefficient and formation damage coefficient for particle flow in porous media using machine learning
    Du, Xuejia
    Wong, George K.
    RESULTS IN ENGINEERING, 2025, 25
  • [7] Screening dementia and predicting high dementia risk groups using machine learning
    Byeon, Haewon
    WORLD JOURNAL OF PSYCHIATRY, 2022, 12 (02): : 204 - 211
  • [8] Predicting Phase Behavior of Linear Polymers in Solution Using Machine Learning
    Ethier, Jeffrey G.
    Casukhela, Rohan K.
    Latimer, Joshua J.
    Jacobsen, Matthew D.
    Rasin, Boris
    Gupta, Maneesh K.
    Baldwin, Luke A.
    Vaia, Richard A.
    MACROMOLECULES, 2022, 55 (07) : 2691 - 2702
  • [9] The Next Phase for Tracking and Predicting the Navigational Behavior Using Machine Learning
    Takahashi, Susumu
    Hoshino, Satoshi
    Ide, Kaoru
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 693 - 696
  • [10] A machine learning method for predicting the chloride migration coefficient of concrete
    Taffese, Woubishet Zewdu
    Espinosa-Leal, Leonardo
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 348