Adaptive scaled boundary finite element method for hydrogen assisted cracking with phase field model

被引:3
|
作者
Suvin, V. S. [1 ]
Ooi, Ean Tat [2 ]
Song, Chongmin [3 ]
Natarajan, Sundararajan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
[2] Federat Univ Australia, Inst Innovat Sci & Engn, Future Reg Res Ctr, Ballarat, Vic 3350, Australia
[3] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
关键词
Hydrogen embrittlement; Scaled boundary finite element method; Phase field model; Adaptive refinement; BRITTLE-FRACTURE; EMBRITTLEMENT; FORMULATION; SIMULATION; PLASTICITY; PRINCIPLES; FRAMEWORK; TITANIUM; METALS;
D O I
10.1016/j.tafmec.2024.104690
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study introduces a numerical framework for analysing hydrogen assisted cracking, employing the scaled boundary finite element method. This is the first instance where the scaled boundary finite element method is employed to model hydrogen embrittlement. The phase field model is utilized to simulate defects, complemented by adaptive meshing using polytree mesh. The ability of the scaled boundary finite element method to treat polygonal elements assists in mitigating the problem of hanging nodes that arises from polytree decomposition. The adaptive framework is developed to predict crack propagation using an initial unstructured quadrilateral mesh generated from any commercial software. The hydrogen atom concentration depends on the hydrostatic stress gradient, which is calculated by interpolating nodal hydrostatic stress with scaled boundary shape functions and taking the gradient. A staggered solution approach is adopted to concurrently tackle hydrogen transport, elasticity, and phase field equations. The methodology is validated using Mode-I edge notch specimens and analysing crack propagation from corrosion pits, with results demonstrating close agreement with existing data. Subsequently, the framework is extended to address more intricate scenarios, such as crack propagation in X-shaped plates and hydrogen transmission in tanks. As the last example, more advanced image based fracture analysis of weld structure is investigated. This example studies the possibility of analysing the hydrogen diffusion directly from TEM imagery. Moreover, we investigate how hydrogen concentration influences structural failure.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Application of Adaptive Phase-Field Scaled Boundary Finite Element Method for Functionally Graded Materials
    Pramod, Aladurthi L. N.
    Hirshikesh
    Natarajan, Sundararajan
    Ooi, Ean Tat
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (03)
  • [2] Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
    Hirshikesh
    Pramod, A. L. N.
    Annabattula, R. K.
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 284 - 307
  • [3] An adaptive polytree approach to the scaled boundary boundary finite element method
    Aladurthi, L. N. Pramod
    Kamdi, Krishna
    Nguyen-Xuan Hung
    Natarajan, S.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2020, 12 (3-4) : 171 - 182
  • [4] An adaptive polytree approach to the scaled boundary boundary finite element method
    L. N. Pramod Aladurthi
    Krishna Kamdi
    Nguyen-Xuan Hung
    S. Natarajan
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2020, 12 : 171 - 182
  • [5] An adaptive scaled boundary finite element method for contact analysis
    Hirshikesh
    Pramod, A. L. N.
    Ooi, Ean Tat
    Song, Chongmin
    Natarajan, Sundararajan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 86
  • [6] An Adaptive Polygonal Scaled Boundary Finite Element Method for Elastodynamics
    Zhang, Z. H.
    Yang, Z. J.
    Li, J. H.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (02)
  • [7] Adaptive phase-field modelling of fracture propagation in poroelastic media using the scaled boundary finite element method
    Wijesinghe, Dakshith Ruvin
    Natarajan, Sundararajan
    You, Greg
    Khandelwal, Manoj
    Dyson, Ashley
    Song, Chongmin
    Ooi, Ean Tat
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 411
  • [8] The scaled boundary finite element method
    J. P. Wolf
    Martin Schanz
    Computational Mechanics, 2004, 33 (4) : 326 - 326
  • [9] Scaled boundary finite element method for analysis of electrostatic field problems
    Liu, Jun
    Lin, Gao
    Wang, Fu-Ming
    Li, Jian-Bo
    Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2011, 51 (05): : 731 - 736
  • [10] The Scaled Boundary Finite Element Method Applied to Electromagnetic Field Problems
    Liu, Jun
    Lin, Gao
    Wang, Fuming
    Li, Jianbo
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10