Channel randomisation: Self-supervised representation learning for reliable visual anomaly detection in speciality crops

被引:1
|
作者
Choi, Taeyeong [1 ]
Would, Owen [2 ]
Salazar-Gomez, Adrian [2 ]
Liu, Xin [3 ]
Cielniak, Grzegorz [2 ]
机构
[1] Kennesaw State Univ, Dept Informat Technol, 1100 South Marietta Pkwy, Marietta, GA 30060 USA
[2] Univ Lincoln, Lincoln Inst Agrifood Technol, Riseholme Pk LN2 2LG, Lincoln, England
[3] Univ Calif Davis, Dept Comp Sci, 2063 Kemper Hall, Davis, CA 95616 USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
Automated crop monitoring; Non-destructive sensing for quality control; Visual anomaly detection; Data augmentation; Curriculum learning;
D O I
10.1016/j.compag.2024.109416
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Modern, automated quality control systems for speciality crops utilise computer vision together with a machine learning paradigm exploiting large datasets for learning efficient crop assessment components. To model anomalous visuals, data augmentation methods are often developed as a simple yet powerful tool for manipulating readily available normal samples. State-of-the-art augmentation methods embed arbitrary "structural"peculiarities in normal images to build a classifier of these artefacts (i.e., pretext task), enabling self-supervised representation learning of visual signals for anomaly detection (i.e., downstream task). In this paper, however, we argue that learning such structure-sensitive representations may be suboptimal for agricultural anomalies (e.g., unhealthy crops) that could be better recognised by a different type of visual element like "colour". To be specific, we propose Channel Randomisation (CH-Rand)-a novel data augmentation method that forces deep neural networks to learn effective encoding of "colour irregularities"under self-supervision whilst performing a pretext task to discriminate channel-randomised images. Extensive experiments are performed across various types of speciality crops (apples, strawberries, oranges, and bananas) to validate the informativeness of learnt representations in detecting anomalous instances. Our results demonstrate that CH-Rand's representations are significantly more reliable and robust, outperforming state-of-the-art methods (e.g., CutPaste) that learn structural representations by over 43% in Area Under the Precision-Recall Curve (AUC-PR), particularly for strawberries. Additional experiments suggest that adopting the L*a*b* * a * b * colour space and "curriculum"learning in the pretext task - gradually disregarding channel combinations for unrealistic outcomes - further improves downstream-task performance by 16% in AUC-PR. In particular, our experiments employ Riseholme-2021, , a novel speciality crop dataset consisting of 3.5K real strawberry images gathered in situ from the real farm, along with the Fresh & Stale public dataset. All our code and datasets are made publicly available online to ensure reproducibility and encourage further research in agricultural technologies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Self-Supervised Autoencoders for Visual Anomaly Detection
    Bauer, Alexander
    Nakajima, Shinichi
    Mueller, Klaus-Robert
    MATHEMATICS, 2024, 12 (24)
  • [2] Decoupling Anomaly Discrimination and Representation Learning: Self-supervised Learning for Anomaly Detection on Attributed Graph
    Hu, Yanming
    Chen, Chuan
    Deng, Bowen
    Lai, Yujing
    Lin, Hao
    Zheng, Zibin
    Bian, Jing
    DATA SCIENCE AND ENGINEERING, 2024, 9 (03) : 264 - 277
  • [3] Self-Supervised Dense Visual Representation Learning
    Ozcelik, Timoteos Onur
    Gokberk, Berk
    Akarun, Lale
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [4] Revisiting Self-Supervised Visual Representation Learning
    Kolesnikov, Alexander
    Zhai, Xiaohua
    Beyer, Lucas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1920 - 1929
  • [5] Self-supervised Sparse Representation for Video Anomaly Detection
    Wu, Jhih-Ciang
    Hsieh, He-Yen
    Chen, Ding-Jie
    Fuh, Chiou-Shann
    Liu, Tyng-Luh
    COMPUTER VISION, ECCV 2022, PT XIII, 2022, 13673 : 729 - 745
  • [6] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [7] CARLA: Self-supervised contrastive representation learning for time series anomaly detection
    Darban, Zahra Zamanzadeh
    Webb, Geoffrey I.
    Pan, Shirui
    Aggarwal, Charu C.
    Salehi, Mahsa
    PATTERN RECOGNITION, 2025, 157
  • [8] Mixed Autoencoder for Self-supervised Visual Representation Learning
    Chen, Kai
    Liu, Zhili
    Hong, Lanqing
    Xu, Hang
    Li, Zhenguo
    Yeung, Dit-Yan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22742 - 22751
  • [9] A survey on self-supervised methods for visual representation learning
    Uelwer, Tobias
    Robine, Jan
    Wagner, Stefan Sylvius
    Hoeftmann, Marc
    Upschulte, Eric
    Konietzny, Sebastian
    Behrendt, Maike
    Harmeling, Stefan
    MACHINE LEARNING, 2025, 114 (04)
  • [10] Scaling and Benchmarking Self-Supervised Visual Representation Learning
    Goyal, Priya
    Mahajan, Dhruv
    Gupta, Abhinav
    Misra, Ishan
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6400 - 6409