Oriented crystalline structure in melt-drawn ultrahigh-molecular-weight polyethylene induced by entanglement networks

被引:1
|
作者
Takazawa, Ayaka [1 ]
Yamanobe, Takeshi [1 ]
Uehara, Hiroki [1 ]
Ohnishi, Takuya [2 ]
Wakabayashi, Yasutake [2 ]
Aoyama, Kouki [3 ]
Sekiguchi, Hiroshi [3 ]
Kakiage, Masaki [1 ]
机构
[1] Gunma Univ, Grad Sch Sci & Technol, Div Mol Sci, Kiryu, Gunma 3768515, Japan
[2] Tosoh Corp, Polymer Mat Res Lab, Yokaichi, Mie 5108540, Japan
[3] JASRI, SPring 8, Sayo, Hyogo 6795198, Japan
关键词
Ultrahigh-molecular-weight polyethylene; Molecular entanglements; Melt-drawn film; Structure; Phase transition; DYNAMICS SIMULATION; PHASE-TRANSITIONS; LINEAR-POLYMERS; BEHAVIOR; FIBERS; TIME;
D O I
10.1016/j.polymer.2024.127683
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, we focused on the unique structure with oblique periodicity formed by the melt-drawing of metallocene-catalyzed ultrahigh-molecular-weight polyethylene (UHMW-PE) to clarify the relationship between tight entanglements that cannot be disentangled during melt-drawing and the formation of the periodic structure. In situ X-ray measurements during the heating of the melt-drawn UHMW-PE film revealed that the disappearance of the characteristic oblique streaks that appeared tilted from the drawing direction and the orthorhombic-to-hexagonal phase transition occurred simultaneously, suggesting that the change in the tension state of extended-chain crystals due to the orthorhombic-to-hexagonal phase transition and the disappearance of order in the structure resulting in oblique streaks are related behaviors. This indicates the presence of the network structure including oriented amorphous chains in which molecular chains are fixed by tight entanglements in metallocene-catalyzed UHMW-PE melt-drawn film.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] MORPHOLOGY AND MECHANICAL-PROPERTIES OF MELT-DRAWN FILMS OF BLENDS OF HIGH-DENSITY POLYETHYLENE AND ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE
    ZHAO, Y
    ZHANG, WG
    YANG, DC
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1993, 12 (16) : 1309 - 1312
  • [2] THE MELT ANISOTROPY OF ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE
    ZACHARIADES, AE
    LOGAN, JA
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1983, 21 (05) : 821 - 830
  • [3] CRYSTALLINE MORPHOLOGY OF ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE PSEUDOGELS
    ZACHARIADES, AE
    JOURNAL OF APPLIED POLYMER SCIENCE, 1986, 32 (03) : 4277 - 4279
  • [4] Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold
    Heffels, W
    Bastiaansen, C
    Caseri, W
    Smith, P
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 353 : 191 - 201
  • [5] Disentangled Melt of Ultrahigh-Molecular-Weight Polyethylene: Fictitious or Real?
    Litvinov, Victor
    Christakopoulos, Fotis
    Lemstra, Pieter Jan
    MACROMOLECULES, 2024, 57 (08) : 3719 - 3730
  • [6] CRYSTALLINE MORPHOLOGY OF ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE PSEUDOGELS.
    Zachariades, Anagnostis E.
    1600, (32):
  • [7] Preparation of Ultrahigh-Molecular-Weight Polyethylene Tapes by Multiple Melt Processing
    Kakiage, Masaki
    Komatsu, Kenta
    JOURNAL OF FIBER SCIENCE AND TECHNOLOGY, 2021, 77 (01): : 1 - 8
  • [8] Preparation of ultrahigh-molecular-weight polyethylene tapes by multiple melt processing
    Kakiage M.
    Komatsu K.
    Journal of Fiber Science and Technology, 2021, 77 (01) : 1 - 8
  • [9] Star Ultrahigh-Molecular-Weight Polyethylene
    Wang, Chaoqun
    Wu, Shilong
    Chen, Quan
    Mu, Hongliang
    Jian, Zhongbao
    MACROMOLECULES, 2023, 56 (21) : 8651 - 8657
  • [10] IRRADIATION OF ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE
    SHINDE, A
    SALOVEY, R
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1985, 23 (08) : 1681 - 1689