Advances in Remote Sensing and Machine Learning Methods for Invasive Plants Study: A Comprehensive Review

被引:1
|
作者
Zaka, Muhammad Murtaza [1 ,2 ]
Samat, Alim [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Key Lab Ecol Safety & Sustainable Dev Arid Lands, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Al Farabi Kazakh Natl Univ, China Kazakhstan Joint Lab RS Technol & Applicat, Alma Ata 050012, Kazakhstan
关键词
invasive plant species; remote sensing; hyperspectral; machine learning; deep learning; SUPPORT VECTOR MACHINE; RANDOM FOREST; WORLDVIEW-2; IMAGERY; CLIMATE-CHANGE; SPECTRAL DISCRIMINATION; HYPERSPECTRAL IMAGERY; FRACTIONAL COVER; AIRBORNE LIDAR; VEGETATION; CLASSIFICATION;
D O I
10.3390/rs16203781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper provides a comprehensive review of advancements in the detection; evaluation; and management of invasive plant species (IPS) using diverse remote sensing (RS) techniques and machine learning (ML) methods. Analyzing the high-resolution datasets received from drones, satellites, and aerial photography enables the perfect cartography technique and analysis of the spread and various impacts of ecology on IPS. The majority of current research on hyperspectral imaging with unmanned aerial vehicle (UAV) enhanced by ML has significantly improved the accuracy and efficiency of identifying mapping IPS, and it also serves as a powerful instrument for ecological management. The integrative association is essential to manage the alien species better, as researchers from multiple other fields participate in modeling innovative methods and structures. Incorporating advanced technologies like light detection and ranging (LiDAR) and hyperspectral imaging shows potential for improving spatial and spectral analysis approaches and utilizing ML approaches such as a support vector machine (SVM), random forest (RF), artificial neural network (ANN), convolutional neural network (CNN), and deep convolutional neural network (DCNN) analysis for detecting complex IPS. The significant results indicate that ML methods, most importantly SVM and RF, are victorious in recognizing the alien species via analyzing RS data. This report emphasizes the importance of continuous research efforts to improve predictive models, fill gaps in our understanding of the connections between climate, urbanization and invasion dynamics, and expands conservation initiatives via utilizing RS techniques. This study also highlights the potential for RS data to refine management plans, enabling the implementation of more efficient strategies for controlling IPS and preserving ecosystems.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management
    Deng, Ying
    Zhang, Yue
    Pan, Daiwei
    Yang, Simon X.
    Gharabaghi, Bahram
    REMOTE SENSING, 2024, 16 (22)
  • [2] Advances in vegetation mapping through remote sensing and machine learning techniques: a scientometric review
    Matyukira, Charles
    Mhangara, Paidamwoyo
    EUROPEAN JOURNAL OF REMOTE SENSING, 2024, 57 (01)
  • [3] Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review
    Holloway, Jacinta
    Mengersen, Kerrie
    REMOTE SENSING, 2018, 10 (09)
  • [4] Review on remote sensing methods for landslide detection using machine and deep learning
    Mohan, Amrita
    Singh, Amit Kumar
    Kumar, Basant
    Dwivedi, Ramji
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (07)
  • [5] Pasture monitoring using remote sensing and machine learning: A review of methods and applications
    Shahi, Tej Bahadur
    Balasubramaniam, Thirunavukarasu
    Sabir, Kenneth
    Nayak, Richi
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [6] A Special Issue on Advances in Machine Learning for Remote Sensing and Geosciences
    Camps-Valls, Gustau
    Bioucas-Dias, Jose
    Crawford, Melba
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (02): : 5 - 7
  • [7] Machine Learning Methods for Remote Sensing Applications: An Overview
    Schulz, Karsten
    Haensch, Ronny
    Soergel, Uwe
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
  • [8] A comprehensive review of soil organic carbon estimates: Integrating remote sensing and machine learning technologies
    Li, Tong
    Cui, Lizhen
    Kuhnert, Matthias
    Mclaren, Timothy I.
    Pandey, Rajiv
    Liu, Hongdou
    Wang, Weijin
    Xu, Zhihong
    Xia, Anquan
    Dalal, Ram C.
    Dang, Yash P.
    JOURNAL OF SOILS AND SEDIMENTS, 2024, : 3556 - 3571
  • [9] Remote Sensing and Machine Learning for Safer Railways: A Review
    Helmi, Wesam
    Bridgelall, Raj
    Askarzadeh, Taraneh
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [10] A comprehensive review on deep learning based remote sensing image super-resolution methods
    Wang, Peijuan
    Bayram, Bulent
    Sertel, Elif
    EARTH-SCIENCE REVIEWS, 2022, 232