Frequency-driven transformer network for remote sensing image change detection

被引:1
|
作者
Liu, Yuan [1 ]
Shi, Aiye [2 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] Hohai Univ, Coll Informat Sci & Engn, Changzhou, Peoples R China
关键词
remote sensing images; change detection; transformer; attention mechanism; convolutional neural network; frequency;
D O I
10.1117/1.JRS.18.034523
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, transformers have been introduced into the field of remote sensing image change detection (CD) due to their excellent global context modeling capabilities. However, the global nature of the self-attention used by transformers is not sensitive to local high-frequency information, making it challenging to address complex CD problems. To address this issue, some methods have considered combining convolutional neural networks and transformers to jointly harvest local-global features. Nevertheless, these methods have not paid much attention to the interactions between the features extracted by the two components. Therefore, to address the challenges faced by existing CD methods in balancing local and global features, as well as their inadequacy in handling complex scenarios, we propose a frequency-driven transformer network (FDTNet) that improves self-attention and the overall architecture. In the overall framework, the network first extracts features to obtain primary and deep features and then utilizes the transformer encoder-decoder network to obtain context embeddings with spatiotemporal information from these primary features to guide the subsequent processing of deep features. In the transformer encoding part, we introduce a frequency-driven attention module, comprising low-frequency attention (LFA) branch, high-frequency attention (HFA) branch, and local window self-attention, where LFA captures global dependencies, HFA handles important high-frequency information, and local window self-attention supplements detailed local information loss. In the transformer decoding part, an interactive attention module is utilized to integrate context information from the transformer encoder into deep features. In addition, we propose an edge enhancement module and gate-controlled channel exchange operation, where the former enhances boundary features using the Sobel operator and the latter swaps channels to obtain richer perspective information. The experimental results show that FDTNet achieved an F1 score of 90.95% on LEVIR-CD, 82.70% on NJDS, and 79.84% on SYSU, outperforming several state-of-the-art CD methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
    Zhang, Cui
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Frequency-Driven Edge Guidance Network for Semantic Segmentation of Remote Sensing Images
    Li, Jinsong
    Zhang, Shujun
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    Wang, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9677 - 9693
  • [3] A Network Combining a Transformer and a Convolutional Neural Network for Remote Sensing Image Change Detection
    Wang, Guanghui
    Li, Bin
    Zhang, Tao
    Zhang, Shubi
    REMOTE SENSING, 2022, 14 (09)
  • [4] PSTNet: Progressive Sampling Transformer Network for Remote Sensing Image Change Detection
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8442 - 8455
  • [5] STLNet: Symmetric Transformer Learning Network for Remote Sensing Image Change Detection
    Mei, Liye
    Huang, Andong
    Ye, Zhaoyi
    Yalikun, Yaxiaer
    Wang, Ying
    Xu, Chuan
    Yang, Wei
    Li, Xinghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2655 - 2667
  • [6] Enhanced hybrid CNN and transformer network for remote sensing image change detection
    Yang, Junjie
    Wan, Haibo
    Shang, Zhihai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Lightweight Structure-Aware Transformer Network for Remote Sensing Image Change Detection
    Lei, Tao
    Xu, Yetong
    Ning, Hailong
    Lv, Zhiyong
    Min, Chongdan
    Jin, Yaochu
    Nandi, Asoke K.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [8] An attention-based multiscale transformer network for remote sensing image change detection
    Liu, Wei
    Lin, Yiyuan
    Liu, Weijia
    Yu, Yongtao
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 599 - 609
  • [9] A Graph-Semantic Guided Transformer Network for Remote Sensing Image Change Detection
    Shi, Aiye
    Liu, Yuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [10] VcT: Visual Change Transformer for Remote Sensing Image Change Detection
    Jiang, Bo
    Wang, Zitian
    Wang, Xixi
    Zhang, Ziyan
    Chen, Lan
    Wang, Xiao
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61