The spatiotemporal distribution patterns and impact factors of bird species richness: A case study of urban built-up areas in Beijing, China

被引:0
|
作者
Zhai, Zheran [1 ]
Liu, Siyao [1 ]
Li, Zimeng [1 ]
Ma, Ruijie [1 ]
Ge, Xiaoyu [1 ]
Feng, Haidong [2 ]
Shi, Yang [2 ]
Gu, Chen [2 ]
机构
[1] Beijing Forestry Univ, Sch Landscape Architecture, Beijing 100083, Peoples R China
[2] Forestry Stn Fengtai Dist Forestry & Pk Bur, Beijing 100055, Peoples R China
关键词
Beijing; Bird species richness; Impact factors; Machine learning; Spatiotemporal distribution patterns; Urban built-up areas; LAND-USE; BIOTIC HOMOGENIZATION; CLIMATE-CHANGE; HEAT-ISLAND; DIVERSITY; BIODIVERSITY; URBANIZATION; CONSERVATION; CITY; COMMUNITIES;
D O I
10.1016/j.ecolind.2024.112847
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
This study aims to investigate the distribution patterns of bird species in urban built-up areas and their impact factors from multiple dimensions, including spatiotemporal distribution, environmental changes, and anthropogenic disturbances, as well as overall distribution and local hotspots. Leveraging geographic distribution data of 383 bird species from 70 families and 21 orders, the study recorded dynamic changes in bird distribution within urban built-up areas characterized by highly heterogeneous core areas and suburban areas. It examined species distribution across different seasons and land cover types, evaluated population fluctuations based on migratory behaviors, and assessed the relative abundance of bird families and species in hotspot areas. Additionally, this study employed three tree-based machine learning algorithms-Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)-to investigate the influence of environmental factors on bird species distribution within urban built-up areas. The findings showed that, temporally, the number of observed bird species in the study area peaked in May and September, while the lowest numbers of species (54.83 %) and individuals (5.45 %) were recorded during the high-temperature period from June to August. Spatially, (1) woodlands, including stable mature forests, unstable juvenile forests, and sparse vegetation, recorded the highest frequencies of bird observations (2,053 times), bird species (369 species), and bird individuals (38,623 individuals); (2) comprehensive parks, where bird species demonstrated higher adaptability to anthropogenic disturbances, experienced a more significant decline in species richness compared to country parks; and (3) the number of bird species in hotspot areas located in the core areas, which developed earlier, has decreased annually, while the number of species in suburban areas, which developed later, has increased annually. In terms of impact factors, water area (WA), point of interest kernel density (DPOI), relative humidity (RH), green space area (GSA), and nighttime light pollution (NL) were identified as the five most important environmental factors affecting bird species richness. These results suggest that although birds exhibit some adaptability to environmental changes and anthropogenic disturbances, species distribution remains significantly impacted. This research aims to provide a planning framework for future urban development that promotes biodiversity and adaptability, thereby bolstering the resilience of urban ecosystems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Impact of urbanization on plant diversity: A case study in built-up areas of Beijing
    LIANG Yao-qin1
    Forestry Studies in China, 2008, (03) : 179 - 188
  • [2] Impact of active "organic decentralization population" policy on future urban built-up areas: Beijing case study
    Liu, Fang
    Sun, Weilun
    HABITAT INTERNATIONAL, 2020, 105
  • [3] Plant species composition in green spaces within the built-up areas of Beijing, China
    Juanjuan Zhao
    Zhiyun Ouyang
    Hua Zheng
    Weiqi Zhou
    Xiaoke Wang
    Weihua Xu
    Yongming Ni
    Plant Ecology, 2010, 209 : 189 - 204
  • [4] Plant species composition in green spaces within the built-up areas of Beijing, China
    Zhao, Juanjuan
    Ouyang, Zhiyun
    Zheng, Hua
    Zhou, Weiqi
    Wang, Xiaoke
    Xu, Weihua
    Ni, Yongming
    PLANT ECOLOGY, 2010, 209 (02) : 189 - 204
  • [5] Impact factors on expansion of built-up areas in Zhejiang Province, China
    Liu, Dong
    Zhu, Qiankun
    Li, Yan
    Gong, Fang
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VIII, 2017, 10428
  • [6] Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas
    Wei, Heyi
    Huang, Bo
    Wang, Mingshu
    Liu, Xuejun
    PLANTS-BASEL, 2025, 14 (04):
  • [7] Assessing the Spatiotemporal Dynamics of Vegetation Coverage in Urban Built-Up Areas
    Chen, Jinlong
    Yu, Zhonglei
    Li, Mengxia
    Huang, Xiao
    LAND, 2023, 12 (01)
  • [8] Erratum to: Plant species composition in green spaces within the built-up areas of Beijing, China
    Juanjuan Zhao
    Zhiyun Ouyang
    Hua Zheng
    Weiqi Zhou
    Xiaoke Wang
    Weihua Xu
    Yongming Ni
    Plant Ecology, 2010, 209 (1) : 179 - 179
  • [9] Extraction of Urban Built-Up Areas Based on Data Fusion: A Case Study of Zhengzhou, China
    Chen, Yaping
    Zhang, Jun
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (10)
  • [10] Urban plant species patterns are highly driven by density and function of built-up areas
    Godefroid, Sandrine
    Koedam, Nico
    LANDSCAPE ECOLOGY, 2007, 22 (08) : 1227 - 1239