Computational complexity of the avalanche problem for one dimensional decreasing sandpiles

被引:0
|
作者
机构
[1] Formenti, Enrico
[2] Perrot, Kévin
[3] Rémila, Éric
关键词
One dimensional - Sand - Dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Computational Complexity of the Avalanche Problem for One Dimensional Decreasing Sandpiles
    Formenti, Enrico
    Perrot, Kevin
    Remila, Eric
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (03) : 215 - 228
  • [2] Computational Complexity of the Avalanche Problem on One Dimensional Kadanoff Sandpiles
    Formenti, Enrico
    Perrot, Kevin
    Remila, Eric
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 21 - 30
  • [3] The computational complexity of one-dimensional sandpiles
    Miltersen, Peter Bro
    THEORY OF COMPUTING SYSTEMS, 2007, 41 (01) : 119 - 125
  • [4] The Computational Complexity of One-Dimensional Sandpiles
    Peter Bro Miltersen
    Theory of Computing Systems, 2007, 41 : 119 - 125
  • [5] The computational complexity of one-dimensional sandpiles
    Miltersen, PB
    NEW COMPUTATIONAL PARADIGMS, 2005, 3526 : 342 - 348
  • [6] The Computational Complexity of Sandpiles
    Cristopher Moore
    Martin Nilsson
    Journal of Statistical Physics, 1999, 96 : 205 - 224
  • [7] On the emergence of regularities on one-dimensional decreasing sandpiles
    Perrot, Kevin
    Remila, Eric
    THEORETICAL COMPUTER SCIENCE, 2020, 843 : 1 - 24
  • [8] The computational complexity of sandpiles
    Moore, C
    Nilsson, M
    JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (1-2) : 205 - 224
  • [9] TOPPLING DISTRIBUTIONS IN ONE-DIMENSIONAL ABELIAN SANDPILES
    RUELLE, P
    SEN, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (22): : L1257 - L1264
  • [10] Scattering problem for the one-dimensional discrete Schrodinger operator with a decreasing potential
    Morozova, L. E.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (01): : 83 - 88