Approximate weak efficiency of the set-valued optimization problem with variable ordering structures

被引:0
|
作者
Zhou, Zhiang [1 ]
Wei, Wenbin [2 ]
Huang, Fei [1 ]
Zhao, Kequan [2 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
国家重点研发计划;
关键词
Set-valued maps; Variable ordering structures; Approximate weakly efficient solution; Scalarization; BENSON PROPER EFFICIENCY; VECTOR OPTIMIZATION; NONDOMINATED SOLUTIONS; SEPARATION THEOREMS; OPTIMAL ELEMENTS; SCALARIZATION; RESPECT; POINTS; DUALITY;
D O I
10.1007/s10878-024-01211-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near D(<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}(\cdot )$$\end{document}-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.
引用
收藏
页数:13
相关论文
共 50 条