Bifurcations of dynamical systems, Logistic and Gompertz growth laws in processes of aggregation

被引:0
|
作者
Shoshitaishvili, Alex [1 ]
Raibekas, Andrei [1 ]
机构
[1] California State University Channel Islands, United States
关键词
25;
D O I
10.1007/978-3-642-16135-3-28
中图分类号
学科分类号
摘要
引用
收藏
页码:349 / 363
相关论文
共 50 条
  • [1] ERROR GROWTH IN A SIMPLE ATMOSPHERIC MODEL - COMPARISON BETWEEN THE LOGISTIC AND GOMPERTZ LAWS
    ROYER, JF
    STROE, R
    NICOLIS, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1993, 316 (02): : 193 - 200
  • [2] Hopf bifurcations in dynamical systems
    Salvatore Rionero
    Ricerche di Matematica, 2019, 68 : 811 - 840
  • [3] Learning dynamical systems with bifurcations
    Khadivar, Farshad
    Lauzana, Ilaria
    Billard, Aude
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 136
  • [4] Bifurcations in Nonsmooth Dynamical Systems
    di Bernardo, Mario
    Budd, Chris J.
    Champneys, Alan R.
    Kowalczyk, Piotr
    Nordmark, Arne B.
    Tost, Gerard Olivar
    Piiroinen, Petri T.
    SIAM REVIEW, 2008, 50 (04) : 629 - 701
  • [5] Hopf bifurcations in dynamical systems
    Rionero, Salvatore
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 811 - 840
  • [6] Random perturbations of dynamical systems and diffusion processes with conservation laws
    Freidlin, M
    Weber, M
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (03) : 441 - 466
  • [7] Random perturbations of dynamical systems and diffusion processes with conservation laws
    Mark Freidlin
    Matthias Weber
    Probability Theory and Related Fields, 2004, 128 : 441 - 466
  • [8] AGGREGATION PROBLEM OF LOGISTIC PROCESSES
    SPREMANN, K
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (08) : 847 - 853
  • [9] Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions
    Rocha, J. Leonel
    Taha, Abdel-Kaddous
    Fournier-Prunaret, D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11):
  • [10] Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
    Mark Freidlin
    Matthias Weber
    Probability Theory and Related Fields, 2007, 137 : 595 - 596