Distribution-Guided Hierarchical Calibration Contrastive Network for Unsupervised Person Re-Identification

被引:1
|
作者
Li, Yongxi [1 ]
Tang, Wenzhong [1 ]
Wang, Shuai [1 ]
Qian, Shengsheng [2 ,3 ]
Xu, Changsheng [2 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab, Multimodal Artificial Intelligence Syst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Task analysis; Self-supervised learning; Pedestrians; Calibration; Semantics; Circuits and systems; Unsupervised person re-identification; pseudo label; memory bank; cross granularity; calibration;
D O I
10.1109/TCSVT.2024.3371088
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The person re-identification task aims to retrieve the same identity under different cameras. The main difficulties of the task lie in the collection of a large amount of annotated data and the diversity of pedestrians. Therefore, how to learn a robust and discriminative representation feature with unlabeled data is the key to this task. The pseudo label based methods have shown significant effectiveness in the field by generating pseudo labels from unlabeled data instead of ground-truth labels. However, existing researches typically suffer two limitations: 1) The extracted features are insufficient to reflect the subtle local semantics; 2) The pseudo labels generated by clustering methods cannot avoid introducing noise, which will seriously affect the performance of the discriminative feature. In this paper, to address the above problems, we propose a Distribution-Guided Hierarchical Calibration Contrastive Network (DHCCN) to better exploit local clues and hierarchical representation, which can consider cross-granularity consistency and reduce the noise of pseudo labels by the calibrated feature distribution. A Hierarchical Feature Extractor is employed to capture the multi-granularity response of each image, and fuse both global salience and local subtle texture information of a pedestrian to generate the hierarchical feature. In addition, to reduce the error of the pseudo labels, we introduce a Feature Distribution Corrector to calibrate noisy features of low-confidence samples evaluated by a Gaussian Mixture Model. At last, we integrate cross-granularity consistency constraint by the difference between the global and local feature, which can help generate more accurate feature embedding and improve robustness of the model. Therefore, we can receive a performance that is close to the supervised person re-identification task by narrowing the gap between the pseudo and ground-truth label. Experiments on four standard benchmarks demonstrate the effectiveness of our method against the state-of-the-art unsupervised re-identification methods. The code is available at https://github.com/Li-Yongxi/2023-DHCCN.
引用
收藏
页码:7149 / 7164
页数:16
相关论文
共 50 条
  • [1] Cluster-Guided Asymmetric Contrastive Learning for Unsupervised Person Re-Identification
    Li, Mingkun
    Li, Chun-Guang
    Guo, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3606 - 3617
  • [2] Hybrid Contrastive Learning for Unsupervised Person Re-Identification
    Si, Tongzhen
    He, Fazhi
    Zhang, Zhong
    Duan, Yansong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4323 - 4334
  • [3] CUPR: Contrastive Unsupervised Learning for Person Re-identification
    Khaldi, Khadija
    Shah, Shishir K.
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 92 - 100
  • [4] HC-GCN: hierarchical contrastive graph convolutional network for unsupervised domain adaptation on person re-identification
    Si Chen
    Bolun Xu
    Miaohui Zhang
    Yan Yan
    Xia Du
    Weiwei Zhuang
    Yun Wu
    Multimedia Systems, 2023, 29 : 2779 - 2790
  • [5] HC-GCN: hierarchical contrastive graph convolutional network for unsupervised domain adaptation on person re-identification
    Chen, Si
    Xu, Bolun
    Zhang, Miaohui
    Yan, Yan
    Du, Xia
    Zhuang, Weiwei
    Wu, Yun
    MULTIMEDIA SYSTEMS, 2023, 29 (5) : 2779 - 2790
  • [6] A new robust contrastive learning for unsupervised person re-identification
    Lin, Huibin
    Fu, Hai-Tao
    Zhang, Chun-Yang
    Chen, C. L. Philip
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1779 - 1793
  • [7] Joint Generative and Contrastive Learning for Unsupervised Person Re-identification
    Chen, Hao
    Wang, Yaohui
    Lagadec, Benoit
    Dantcheva, Antitza
    Bremond, Francois
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2004 - 2013
  • [8] Reliability modeling and contrastive learning for unsupervised person re-identification
    Pang, Zhiqi
    Wang, Chunyu
    Wang, Junjie
    Zhao, Lingling
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [9] A new robust contrastive learning for unsupervised person re-identification
    Huibin Lin
    Hai-Tao Fu
    Chun-Yang Zhang
    C. L. Philip Chen
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1779 - 1793
  • [10] Unsupervised person re-identification by dynamic hybrid contrastive learning
    Zhao, Yu
    Shu, Qiaoyuan
    Shi, Xi
    Zhan, Jian
    IMAGE AND VISION COMPUTING, 2023, 137