Molecular engineering, supporting electrolyte, and membrane selections for enhanced cycling stability of non-aqueous organic redox flow batteries: A review

被引:0
|
作者
Tegegne, Belay Getahun [1 ,2 ]
Bayeh, Anteneh Wodaje [1 ,3 ,4 ]
Kabtamu, Daniel Manaye [1 ]
Demeku, Aknachew Mebreku [1 ]
Wang, Chen-Hao [1 ,5 ,6 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 106335, Taiwan
[2] Bule Hora Univ, Dept Chem, Bule Hora, Ethiopia
[3] Addis Ababa Inst Technol AAiT, Sch Chem & Bioengn, King George VI St, Addis Ababa 1000, Ethiopia
[4] Addis Ababa Inst Technol AAiT, Ctr Mat Engn, Sch Multidisciplinary, King George VI St, Addis Ababa 1000, Ethiopia
[5] Natl Taiwan Univ Sci & Technol, Adv Mfg Res Ctr, Taipei 106335, Taiwan
[6] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
关键词
Non-aqueous organic redox flow batteries; (NAORFBS); Cycling stability; Redox-active species; Organic redox-active molecules (ORMS); ELECTROCHEMICAL PROPERTIES; OVERCHARGE PERFORMANCE; DESIGN; PHENOTHIAZINE; DERIVATIVES; CROSSOVER;
D O I
10.1016/j.cej.2024.157792
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Redox flow batteries (RFBs) have attracted researchers due to their decoupled nature of energy and power modulations, suitability for large-scale stationary energy storage, and integration of renewable intermittent energy sources such as solar and wind power. Water's narrow electrochemical stability window limits the energy density of aqueous redox flow batteries. Thus, a shift to non-aqueous organic redox flow batteries (NAORFBs) is necessary to achieve high energy density while benefiting from organic solvents' expansive electrochemical stability windows. Nonetheless, the degradation and crossover of organic electroactive materials cause rapid capacity loss in NAORFBs. To improve the cycling stability of NAORFBs, molecular engineering is required to enhance the stability of redox-active species, particularly charged species, and the solubility of redox-active species. An appropriate ion-selective membrane that mitigates crossover by selectively allowing the passage of ions of supporting salts needs to be developed. This review discusses molecular design strategies that may improve radical ion stability, increase the solubility of redox-active species, and reduce redox-active species crossover and the selection of appropriate supporting electrolytes and separators/membranes for the overall enhancement of the cycle life and performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Cycling stability of high voltage, organic non-aqueous redox flow batteries
    Hendriks, Koen
    Sevov, Christo
    Cook, Monique
    Sanford, Melanie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [2] Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review
    Armstrong, Craig G.
    Toghill, Kathryn E.
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 91 : 19 - 24
  • [3] Organic redox flow batteries in non-aqueous electrolyte solutions
    Ahn, Seongmo
    Yun, Ariyeong
    Ko, Donghwi
    Singh, Vikram
    Joo, Jung Min
    Byon, Hye Ryung
    CHEMICAL SOCIETY REVIEWS, 2025, 54 (02) : 742 - 789
  • [4] Molecular Engineering of Redox Couples for Non-Aqueous Redox Flow Batteries
    Davis, Casey M.
    Boronski, Claire E.
    Yang, Tianyi
    Liu, Tuo
    Liang, Zhiming
    BATTERIES-BASEL, 2023, 9 (10):
  • [5] Unlocking Molecular Interactions of Biredox Eutectic Electrolyte for Non-Aqueous Symmetrical Organic Redox Flow Batteries
    Peng, Chengxin
    Li, Wanghao
    Liu, Yue
    Cao, Yunjie
    Niu, Zhihui
    Luo, Jian
    Sun, Xiaohua
    Mao, Jianfeng
    Min, Yulin
    Liu, T. Leo
    Zhao, Yu
    Dou, Shi Xue
    Guo, Zaiping
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [6] Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
    Sleightholme, Alice E. S.
    Shinkle, Aaron A.
    Liu, Qinghua
    Li, Yongdan
    Monroe, Charles W.
    Thompson, Levi T.
    JOURNAL OF POWER SOURCES, 2011, 196 (13) : 5742 - 5745
  • [7] Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
    Liu, Qinghua
    Sleightholme, Alice E. S.
    Shinkle, Aaron A.
    Li, Yongdan
    Thompson, Levi T.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) : 2312 - 2315
  • [8] Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
    Liu, Qinghua
    Shinkle, Aaron A.
    Li, Yongdan
    Monroe, Charles W.
    Thompson, Levi T.
    Sleightholme, Alice E. S.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) : 1634 - 1637
  • [9] Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries
    Zhu, Fulong
    Guo, Wei
    Fu, Yongzhu
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (02)
  • [10] Redox active viologen derivatives for aqueous and non-aqueous organic redox flow batteries applications
    Cho, Yunho
    Kye, Hyojin
    Kim, Bong-Gi
    Kwon, Ji Eon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 136 : 73 - 88