Novel learning framework for optimal multi-object video trajectory tracking

被引:0
|
作者
Chen S. [1 ]
Hu X. [1 ]
Jiang W. [1 ]
Zhou W. [1 ]
Ding X. [1 ]
机构
[1] School of Computer and Information, Anhui Normal University, Anhui
来源
基金
中国国家自然科学基金;
关键词
Multi-object tracking; Trajectory extraction; Trajectory optimization; Virtual evacuation; Web3D;
D O I
10.1016/j.vrih.2023.04.001
中图分类号
学科分类号
摘要
Background: With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods: To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky–Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results: In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions: Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework. © 2023 Beijing Zhongke Journal Publishing Co. Ltd
引用
收藏
页码:422 / 438
页数:16
相关论文
共 50 条
  • [1] Novel learning framework for optimal multi-object video trajectory tracking
    Siyuan CHEN
    Xiaowu HU
    Wenying JIANG
    Wen ZHOU
    Xintao DING
    虚拟现实与智能硬件(中英文), 2023, 5 (05) : 422 - 438
  • [2] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [3] Multi-object trajectory tracking
    Mei Han
    Wei Xu
    Hai Tao
    Yihong Gong
    Machine Vision and Applications, 2007, 18 : 221 - 232
  • [4] A Framework to Combine Multi-Object Video Segmentation and Tracking
    Nadeem, Sehr
    Rahman, Anis
    Butt, Asad A.
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 525 - 531
  • [5] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [6] Deep learning in video multi-object tracking: A survey
    Ciaparrone, Gioele
    Luque Sanchez, Francisco
    Tabik, Siham
    Troiano, Luigi
    Tagliaferri, Roberto
    Herrera, Francisco
    NEUROCOMPUTING, 2020, 381 : 61 - 88
  • [7] Robust multi-object tracking using deep learning framework
    Pang, Sh Ch
    Du, Anan
    Yu, Zh. Zh.
    JOURNAL OF OPTICAL TECHNOLOGY, 2015, 82 (08) : 516 - 527
  • [8] A Robust Framework for Multi-object Tracking
    Jalal, Anand Singh
    Singh, Vrijendra
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT 4, 2011, 193 : 329 - 338
  • [9] Coupled detection and trajectory estimation for multi-object tracking
    Leibe, Bastian
    Schindler, Konrad
    Van Gool, Luc
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 849 - 856
  • [10] A deep learning framework for multi-object tracking in team sports videos
    Cao, Wei
    Wang, Xiaoyong
    Liu, Xianxiang
    Xu, Yishuai
    IET COMPUTER VISION, 2024, 18 (05) : 574 - 590