Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations

被引:6
|
作者
Minden V. [1 ]
Damle A. [2 ]
Ho K.L. [3 ]
Ying L. [1 ,4 ]
机构
[1] Institute for Computational and Mathematical Engineering, Stanford University, Stanford, 94305, CA
[2] Department of Computer Science, Cornell University, Ithaca, 14850, NY
[3] TSMC Technology Inc., San Jose, 95134, CA
[4] Department of Mathematics, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, 94305, CA
来源
| 1600年 / Society for Industrial and Applied Mathematics Publications卷 / 15期
基金
美国国家科学基金会;
关键词
Fast algorithms; Hierarchical matrices; Kriging; Maximum likelihood estimation; Spatial Gaussian processes;
D O I
10.1137/17M1116477
中图分类号
学科分类号
摘要
Maximum likelihood estimation for parameter fitting given observations from a Gaussian process in space is a computationally demanding task that restricts the use of such methods to moderately sized datasets. We present a framework for unstructured observations in two spatial dimensions that allows for evaluation of the log-likelihood and its gradient (i.e., the score equations) in Õ(n3/2) time under certain assumptions, where n is the number of observations. Our method relies on the skeletonization procedure described by Martinsson and Rokhlin [J. Cornput. Phys., 205 (2005), pp. 1-23] in the form of the recursive skeletonization factorization of Ho and Ying [Cornrn. Pure Appl. Math., 69 (2015), pp. 1415-1451]. Combining this with an adaptation of the matrix peeling algorithm of Lin, Lu, and Ying [J. Cornput. Phys., 230 (2011), pp, 4071-4087] for constructing ℋ-matrix representations of black-box operators, we obtain a framework that can be used in the context of any first-order optimization routine to quickly and accurately compute maximum likelihood estimates. © 2017 Society for Industrial and Applied Mathematics.
引用
收藏
页码:1584 / 1611
页数:27
相关论文
共 50 条
  • [1] On maximum likelihood estimation for Gaussian spatial autoregression models
    Mohapl, J
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1998, 50 (01) : 165 - 186
  • [2] On Maximum Likelihood Estimation for Gaussian Spatial Autoregression Models
    Jaroslav Mohapl
    Annals of the Institute of Statistical Mathematics, 1998, 50 : 165 - 186
  • [3] Maximum likelihood estimation for Gaussian process with nonlinear drift
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Shklyar, Sergiy
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01): : 120 - 140
  • [4] Gaussian maximum likelihood estimation for ARMA models II: Spatial processes
    Yao, Qiwei
    Brockwell, Peter J.
    BERNOULLI, 2006, 12 (03) : 403 - 429
  • [5] Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
    Karvonen, Toni
    Oates, Chris J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [6] ON THE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A GAUSSIAN MOVING AVERAGE PROCESS
    GODOLPHIN, EJ
    DEGOOIJER, JG
    BIOMETRIKA, 1982, 69 (02) : 443 - 451
  • [7] Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation
    Basak, Subhasish
    Petit, Sebastien
    Bect, Julien
    Vazquez, Emmanuel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 116 - 131
  • [8] Fast, Approximate Maximum Likelihood Estimation of Log-Gaussian Cox Processes
    Dovers, Elliot
    Brooks, Wesley
    Popovic, Gordana C. C.
    Warton, David I. I.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1660 - 1670
  • [9] Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian Process Approximation of Deterministic Functions
    Karvonen, Toni
    Wynne, George
    Tronarp, Filip
    Oates, Chris
    Sarkka, Simo
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (03): : 926 - 958
  • [10] Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics
    Velandia, Daira
    Bachoc, Francois
    Bevilacqua, Moreno
    Gendre, Xavier
    Loubes, Jean-Michel
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2978 - 3007