Minimum-time dispatch problem: Formulation and solution

被引:0
|
作者
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
J. Aerosp. Comput. Inf. Commun. | 2007年 / 10卷 / 996-1002期
关键词
D O I
10.2514/1.32742
中图分类号
学科分类号
摘要
引用
收藏
页码:996 / 1002
相关论文
共 50 条
  • [1] A solution of the minimum-time speed planning problem based on lattice theory
    Consolini, Luca
    Laurini, Mattia
    Locatelli, Marco
    Minari, Andrea
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (12): : 7617 - 7637
  • [2] On the linear quadratic minimum-time problem
    Verriest, E.I., 1600, (36):
  • [3] ON THE LINEAR QUADRATIC MINIMUM-TIME PROBLEM
    VERRIEST, EI
    LEWIS, FL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (07) : 859 - 863
  • [4] Algebraic Solution to Minimum-Time Velocity Planning
    Lini, Gabriele
    Piazzi, Aurelio
    Consolini, Luca
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (04) : 805 - 814
  • [5] Optimal Institutional Advertising: Minimum-Time Problem
    Sethi, S. P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 14 (02) : 213 - 231
  • [6] Algebraic solution to minimum-time velocity planning
    Gabriele Lini
    Aurelio Piazzi
    Luca Consolini
    International Journal of Control, Automation and Systems, 2013, 11 : 805 - 814
  • [7] On the discrete linear quadratic minimum-time problem
    el Alami, N
    Ouansafi, A
    Znaidi, N
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1998, 335B (03): : 525 - 532
  • [8] On the discrete linear quadratic minimum-time problem
    El Alami, N.
    Ouansafi, A.
    Znaidi, N.
    Journal of the Franklin Institute, 1998, 335 B (03): : 525 - 532
  • [9] Non-integrability of the minimum-time Kepler problem
    Orieux, M.
    Caillau, J-B
    Combot, T.
    Fejoz, J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 452 - 459