Deep learning for automated encrustation detection in sewer inspection

被引:0
|
作者
Yusuf, Wasiu [1 ]
Alaka, Hafiz [1 ]
Ahmad, Mubashir [1 ]
Godoyon, Wusu [1 ]
Ajayi, Saheed [2 ]
Toriola-Coker, Luqman Olalekan [3 ]
Ahmed, Abdullahi [4 ]
机构
[1] Univ Hertfordshire, Big Data Technol & Innovat Lab, Hatfield AL10 9AB, England
[2] Leeds Beckett Univ, Sch Built Environm Engn & Comp, Leeds LS2 8AG, England
[3] Univ Salford, Sch Built Environm Engn & Comp, Manchester M5 4WT, England
[4] Coventry Univ, Sch Energy Construct & Environm, Coventry CV1 5FB, England
来源
基金
“创新英国”项目;
关键词
Deep-learning; Encrustation; CNN; Sewer systems; CCTV; DEFECT CLASSIFICATION; DAMAGE DETECTION; NEURAL-NETWORKS;
D O I
10.1016/j.iswa.2024.200433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rapid urbanization and population growth in recent decades have placed significant pressure on urban cities to rely heavily on underground infrastructure, such as sewers and tunnels, to maintain the provision of essential services. These sewers, typically having a limited lifespan of 50 to 100 years, are prone to various forms of defects. While prior research has primarily addressed common sewer defect like crack, root intrusion, and infiltration among others, the challenge of encrustation-the formation of hard deposits within sewer systems-has received less attention. This study presents a pioneering deep-learning approach to detect encrustation in sewers by leveraging survey videos from 14 different sewers in the United Kingdom. Our work marks the first effort to develop models specifically for detecting encrustation using deep learning techniques, as previous studies have focused on other types of deposits such as settled and attached deposits. By converting the videos into sequential image frames, we subjected them to thorough analysis and several image pre-processing techniques. Our contributions include the development and comparison of different classification models using backbone CNN networks such as AlexNet, VGG16, EfficientNet, and VGG19 to classify encrustation. Notably, this study provides the first metric-based comparison of these backbone networks to identify the most effective model for encrustation detection. The results demonstrate an impressive 96 % accuracy using the deep architecture of VGG19. Beyond accuracy, this research explores the impact of data augmentation and network dropout on reducing overfitting and enhancing model performance. Additionally, we analyze the time complexities associated with training models with and without data augmentation, providing valuable insights into the efficiency of our approach.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Deep learning for automated focus quality detection in wafer inspection
    Wright, Carrie
    Yang, Samuel J.
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION IV, 2021, 11787
  • [2] Development and Improvement of Deep Learning Based Automated Defect Detection for Sewer Pipe Inspection Using Faster R-CNN
    Wang, Mingzhu
    Cheng, Jack C. P.
    ADVANCED COMPUTING STRATEGIES FOR ENGINEERING, PT II, 2018, 10864 : 171 - 192
  • [3] Deep Learning-Based Automated Detection of Sewer Defects in CCTV Videos
    Kumar, Srinath Shiv
    Wang, Mingzhu
    Abraham, Dulcy M.
    Jahanshahi, Mohammad R.
    Iseley, Tom
    Cheng, Jack C. P.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2020, 34 (01)
  • [4] A Deep Learning Based Automated Structural Defect Detection System for Sewer Pipelines
    Kumar, Srinath S.
    Abraham, Dulcy M.
    COMPUTING IN CIVIL ENGINEERING 2019: SMART CITIES, SUSTAINABILITY, AND RESILIENCE, 2019, : 226 - 233
  • [5] Automated defect detection for sewer pipeline inspection and condition assessment
    Guo, W.
    Soibelman, L.
    Garrett, J. H., Jr.
    AUTOMATION IN CONSTRUCTION, 2009, 18 (05) : 587 - 596
  • [6] Automated Anomaly Detection and Localization in Sewer Inspection Videos Using Proportional Data Modeling and Deep Learning-Based Text Recognition
    Moradi, Saeed
    Zayed, Tarek
    Nasiri, Fuzhan
    Golkhoo, Farzaneh
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2020, 26 (03)
  • [7] A deep learning-based framework for an automated defect detection system for sewer pipes
    Yin, Xianfei
    Chen, Yuan
    Bouferguene, Ahmed
    Zaman, Hamid
    Al-Hussein, Mohamed
    Kurach, Luke
    AUTOMATION IN CONSTRUCTION, 2020, 109 (109)
  • [8] Automated Visual Inspection of Fabric Image Using Deep Learning Approach for Defect Detection
    Voronin, V.
    Sizyakin, R.
    Zhdanova, M.
    Semenishchev, E.
    Bezuglov, D.
    Zelenskii, A.
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION IV, 2021, 11787
  • [9] Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection
    Omid Davtalab
    Ali Kazemian
    Xiao Yuan
    Behrokh Khoshnevis
    Journal of Intelligent Manufacturing, 2022, 33 : 771 - 784
  • [10] Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection
    Davtalab, Omid
    Kazemian, Ali
    Yuan, Xiao
    Khoshnevis, Behrokh
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (03) : 771 - 784