Characterization of the stress-state dependent ductile fracture behavior for Q960 ultra-high-strength structural steel

被引:1
|
作者
Shang, Mingxu [1 ]
Yang, Hua [1 ,2 ]
Muenstermann, Sebastian [3 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[2] State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Guangxi, Peoples R China
[3] Rhein Westfal TH Aachen, Inst Met Forming, Intzestr 10, D-52072 Aachen, Germany
基金
中国国家自然科学基金;
关键词
Ultra-high-strength steel; Q960; Fracture initiation; Stress triaxiality; Lode angle parameter; CUTOFF VALUE; NEW-MODEL; STRAIN; TRIAXIALITY; PLASTICITY; PREDICTION; SHEETS; SHEAR;
D O I
10.1016/j.tws.2024.112508
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high-strength structural steels are gaining popularity in civil engineering due to their exceptional strength- to-weight ratio. However, their inherent lower ductility compared to normal strength structural steel warrants particular attention and further investigation for safety assessment. In this study, a total of 24 specimens made of Q960 ultra-high-strength steel (UHSS), including 21 tensile specimens with various stress states and 3 three-point bending specimens, were tested to assess its mechanical behavior undergoing large deformation. Subsequently, the impact of stress state on plasticity, damage evolution and fracture initiation was analyzed and characterized. The Bai-Wierzbicki yield surface with a deviatoric associated flow rule was identified to characterize the complex plasticity behavior of Q960 UHSS. With respect to damage evolution, the stress-state dependent fracture energy G f was proposed in this study to describe the damage softening behavior. The uncoupled Hosford-Coulomb locus with a non-linear weight function was utilized to predict the fracture initiation behavior. Finally, the utilized stress-state dependent constitutive models for Q960 UHSS, with the calibrated parameters and user-defined material subroutine VUMAT, were successfully verified through the three-point bending test with good agreement. Moreover, based on a parametric analysis of radius-to-thickness ratio, the bendability design regarding the minimum radius-to-thickness ratio of Q960 UHSS was proposed.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Strain rate dependent ductile fracture behavior of Q960 ultra-high-strength steel
    Shang, Mingxu
    Yang, Hua
    International Journal of Mechanical Sciences, 2025, 293
  • [2] Springback analysis of Q960 ultra-high-strength structural steel considering degenerated chord modulus
    Shang, Mingxu
    Yang, Hua
    Hou, Chuan-Chuan
    Zhao, Yang
    THIN-WALLED STRUCTURES, 2025, 209
  • [3] Experimental study on the properties of Q960 ultra-high-strength steel after fire exposure
    Xue, Xuanyi
    Shi, Yu
    Zhou, Xuhong
    Wang, Jie
    Xu, Yunpeng
    STRUCTURES, 2023, 47 : 2081 - 2098
  • [4] Residual mechanical properties of butt-welded ultra-high-strength steel (Q890 and Q960)after fire exposure
    Liu, Shubang
    Chen, Shicai
    Hou, Liqun
    Zhou, Zhengming
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 219
  • [5] Post-fire Mechanical Properties of Q960 Cold-Formed Thick-Walled Ultra-High-Strength Steel
    Shi, Yu
    Wang, Jie
    Zhou, Xuhong
    Xue, Xuanyi
    Li, Yanmin
    FIRE TECHNOLOGY, 2024, 60 (03) : 1917 - 1953
  • [6] Experimental study on the post-fire cyclic behavior of Q960E ultra-high-strength structural steel
    Ding, Miao
    Shen, Le
    Ge, Yi-Qing
    Yang, Bo
    Zhao, Ming-Shan
    Ran, Chun-Hua
    Chiew, Sing-Ping
    THIN-WALLED STRUCTURES, 2023, 191
  • [7] Post-fire mechanical response of Q960E ultra-high-strength structural steel
    Shen, Le
    Ding, Miao
    Yao, Wancheng
    Yang, Bo
    Wang, Fan
    Ran, Chunhua
    Elchalakani, Mohamed
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 201
  • [8] Strain-rate and stress-state dependent ductile fracture model of S690 high-strength steel
    Shang, Mingxu
    Yang, Hua
    Su, Andi
    Wang, Yuyin
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 204
  • [9] Mechanical properties of high-strength Q960 steel at elevated temperature
    Wang, Weiyong
    Zhang, Yanhong
    Xu, Lei
    Li, Xiang
    FIRE SAFETY JOURNAL, 2020, 114
  • [10] Experimental and numerical study on the behavior of high strength Q960 steel columns after fire exposure
    Wang, Weiyong
    Li, Yameng
    Wang, Zhiruoyu
    Pang, Shiyun
    THIN-WALLED STRUCTURES, 2024, 198