A Review on Development and Application of Probabilistic Fatigue Life Prediction Models for Metal Materials and Components

被引:0
|
作者
Zhang M. [1 ]
Yuan S. [1 ]
Zhong M. [1 ]
Bai J. [1 ]
机构
[1] Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang
来源
| 2018年 / Cailiao Daobaoshe/ Materials Review卷 / 32期
关键词
Fatigue damage mechanism; Fatigue life prediction; Fatigue life variability; Probabilistic model;
D O I
10.11896/j.issn.1005-023X.2018.05.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Because of the uncertainty of fatigue damage process and the uncertain influence factors for fatigue life, it is difficult to predict the fatigue life of metal materials and the variability of fatigue life. Combining the statistical theory and probabilistic me-thod in the fatigue life prediction model is the most important method to describe the uncertain and statistical nature of fatigue process and the variability of fatigue life. In this paper, the development and application of fatigue life prediction model for metal materials are reviewed. The random model based on empirical fatigue life theory, the statistical model for characterizing the variability, the probabilistic model for fatigue life prediction based on microstructure and physical mechanism of fatigue, and the probabilistic model for wide spread damage are introduced and summarized. This paper ends with discussion on the future research direction of fatigue life prediction method. © 2018, Materials Review Magazine. All right reserved.
引用
收藏
页码:808 / 814
页数:6
相关论文
共 66 条
  • [1] Pineau A., McDowell D.L., Busso E.P., Et al., Failure of metals Ⅱ: Fatigue, Acta Materialia, 107, (2016)
  • [2] Hong Y.S., Zhao A.G., Qian G.A., Essential characteristic and in-fluential factors for very high cycle fatigue behavior of metallic ma-terials, Acta Metallurtica Sinica, 45, 7, (2009)
  • [3] Tang L., Lu L., Effect of twin lamellar thickness on the fatigue pro-perties of nanotwinned Cu, Acta Metallurtica Sinica, 45, 7, (2009)
  • [4] Han S.W., Shi D.Q., Yang X.G., Et al., Computational study on microstructure sensitive high cycle fatigue dispersivity, Acta Metallurtica Sinica, 52, 3, (2016)
  • [5] Tryon R.G., Cruse T.A., Probabilistic mesomechanics for high cycle fatigue life prediction, Journal of Engineering Materials and Technology, 122, (2000)
  • [6] Przybyla C., Prasannavenkatesan R., Salajegheh N., Et al., Microstructure-sensitive modeling of high cycle fatigue, International Journal of Fatigue, 32, (2010)
  • [7] Makkonen M., Predicting the total fatigue life in metals, International Journal of Fatigue, 31, (2009)
  • [8] Jiang Y.Y., Ding F., Feng M.L., An approach for fatigue life prediction, Journal of Engineering Materials & Technology, 129, 2, (2005)
  • [9] Karlen K., Olsson M., An investigation of the location of fatigue ini-tiation-deterministic and probabilistic aspects, International Journal of Fatigue, 66, (2014)
  • [10] Machniewicz T., Fatigue crack growth prediction models for metallic materials Part Ⅰ: Overview of prediction concepts, Fatigue & Fracture of Engineering Materials & Structures, 36, (2012)