共 66 条
- [1] Pineau A., McDowell D.L., Busso E.P., Et al., Failure of metals Ⅱ: Fatigue, Acta Materialia, 107, (2016)
- [2] Hong Y.S., Zhao A.G., Qian G.A., Essential characteristic and in-fluential factors for very high cycle fatigue behavior of metallic ma-terials, Acta Metallurtica Sinica, 45, 7, (2009)
- [3] Tang L., Lu L., Effect of twin lamellar thickness on the fatigue pro-perties of nanotwinned Cu, Acta Metallurtica Sinica, 45, 7, (2009)
- [4] Han S.W., Shi D.Q., Yang X.G., Et al., Computational study on microstructure sensitive high cycle fatigue dispersivity, Acta Metallurtica Sinica, 52, 3, (2016)
- [5] Tryon R.G., Cruse T.A., Probabilistic mesomechanics for high cycle fatigue life prediction, Journal of Engineering Materials and Technology, 122, (2000)
- [6] Przybyla C., Prasannavenkatesan R., Salajegheh N., Et al., Microstructure-sensitive modeling of high cycle fatigue, International Journal of Fatigue, 32, (2010)
- [7] Makkonen M., Predicting the total fatigue life in metals, International Journal of Fatigue, 31, (2009)
- [8] Jiang Y.Y., Ding F., Feng M.L., An approach for fatigue life prediction, Journal of Engineering Materials & Technology, 129, 2, (2005)
- [9] Karlen K., Olsson M., An investigation of the location of fatigue ini-tiation-deterministic and probabilistic aspects, International Journal of Fatigue, 66, (2014)
- [10] Machniewicz T., Fatigue crack growth prediction models for metallic materials Part Ⅰ: Overview of prediction concepts, Fatigue & Fracture of Engineering Materials & Structures, 36, (2012)