Reinforcement learning model for optimizing dexmedetomidine dosing to prevent delirium in critically ill patients

被引:0
|
作者
Lee, Hong Yeul [1 ]
Chung, Soomin [2 ]
Hyeon, Dongwoo [3 ]
Yang, Hyun-Lim [4 ,5 ,6 ]
Lee, Hyung-Chul [7 ,8 ]
Ryu, Ho Geol [1 ,7 ]
Lee, Hyeonhoon [6 ,8 ]
机构
[1] Seoul Natl Univ Hosp, Dept Crit Care Med, Seoul, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul, South Korea
[4] Seoul Natl Univ Hosp, Off Hosp Informat, Seoul, South Korea
[5] Seoul Natl Univ Hosp, Innovat Med Technol Res Inst, Dept Med Device Dev Support, Seoul, South Korea
[6] Seoul Natl Univ, Dept Med, Coll Med, Seoul, South Korea
[7] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Anesthesiol & Pain Med, Coll Med, Seoul, South Korea
[8] Seoul Natl Univ Hosp, Innovat Med Technol Res Inst, Dept Data Sci Res, Seoul, South Korea
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
关键词
INTENSIVE-CARE-UNIT; SEDATION;
D O I
10.1038/s41746-024-01335-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Delirium can result in undesirable outcomes including increased length of stays and mortality in patients admitted to the intensive care unit (ICU). Dexmedetomidine has emerged for delirium prevention in these patients; however, optimal dosing is challenging. A reinforcement learning-based Artificial Intelligence model for Delirium prevention (AID) is proposed to optimize dexmedetomidine dosing. The model was developed and internally validated using 2416 patients (2531 ICU admissions) and externally validated on 270 patients (274 ICU admissions). The estimated performance return of the AID policy was higher than that of the clinicians' policy in both derivation (0.390 95% confidence interval [CI] 0.361 to 0.420 vs. -0.051 95% CI -0.077 to -0.025) and external validation (0.186 95% CI 0.139 to 0.236 vs. -0.436 95% CI -0.474 to -0.402) cohorts. Our finding indicates that AID might support clinicians' decision-making regarding dexmedetomidine dosing to prevent delirium in ICU patients, but further off-policy evaluation is required.
引用
收藏
页数:13
相关论文
共 50 条
  • [2] Evaluation of Dexmedetomidine Dosing in Obese Critically Ill Patients
    Atyia, Sara A.
    Smetana, Keaton S.
    Tong, Minh C.
    Thompson, Molly J.
    Cape, Kari M.
    May, Casey C.
    JOURNAL OF PHARMACY PRACTICE, 2023, 36 (01) : 67 - 73
  • [3] EVALUATION OF DEXMEDETOMIDINE DOSING IN OBESE CRITICALLY ILL PATIENTS
    Atyia, Sara
    Smetana, Keaton
    Minh Tong
    Thompson, Molly
    Cape, Kari
    May, Casey
    CRITICAL CARE MEDICINE, 2021, 49 (01) : 447 - 447
  • [4] Optimizing dosing of antibiotics in critically ill patients
    Parker, Suzanne L.
    Sime, Fekade B.
    Roberts, Jason A.
    CURRENT OPINION IN INFECTIOUS DISEASES, 2015, 28 (06) : 497 - 504
  • [5] EVALUATION OF DEXMEDETOMIDINE DOSING ON TEMPERATURE IN OBESE CRITICALLY ILL PATIENTS
    Atyia, Sara
    Gerlach, Anthony
    Smetana, Keaton
    Thompson, Molly
    May, Casey
    CRITICAL CARE MEDICINE, 2022, 50 (01) : 484 - 484
  • [6] Optimizing Antimicrobial Drug Dosing in Critically Ill Patients
    Povoa, Pedro
    Moniz, Patricia
    Pereira, Joao Goncalves
    Coelho, Luis
    MICROORGANISMS, 2021, 9 (07)
  • [7] Effectiveness of dexmedetomidine for delirium and its impact on hemodynamics in critically ill patients
    Kausar, Shamim
    Yasin, Iqra
    Ahsan, Irfan
    Rais, Zunairah
    ANAESTHESIA PAIN & INTENSIVE CARE, 2020, 24 (06) : 645 - 649
  • [8] Dexmedetomidine for the prevention of delirium in critically ill patients - A protocol for a systematic review
    Maagaard, Mathias
    Barbateskovic, Marija
    Perner, Anders
    Jakobsen, Janus Christian
    Wetterslev, Jorn
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2019, 63 (04) : 540 - 548
  • [9] Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis
    Roggeveen, Luca
    el Hassouni, Ali
    Ahrendt, Jonas
    Guo, Tingjie
    Fleuren, Lucas
    Thoral, Patrick
    Girbes, Armand R. J.
    Hoogendoorn, Mark
    Elbers, Paul W. G.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 112
  • [10] The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients
    Marta Ulldemolins
    Jason A. Roberts
    Jordi Rello
    David L. Paterson
    Jeffrey Lipman
    Clinical Pharmacokinetics, 2011, 50 : 99 - 110