Explicit solutions for completely integrable classical Calogero-Moser systems in an external field

被引:0
|
作者
Meshcheryakov, D.V.
Meshcheryakova, T.D.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:18 / 21
相关论文
共 50 条
  • [1] An explicit characterization of Calogero-Moser systems
    Gesztesy, F
    Unterkofler, K
    Weikard, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) : 603 - 656
  • [2] A class of integrable spin Calogero-Moser systems
    Li, LC
    Xu, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (02) : 257 - 286
  • [3] A Class of Integrable Spin Calogero-Moser Systems
    Luen-Chau Li
    Ping Xu
    Communications in Mathematical Physics, 2002, 231 : 257 - 286
  • [4] Integrable sl(N, ℂ) tops as Calogero-Moser systems
    A. V. Smirnov
    Theoretical and Mathematical Physics, 2009, 158 : 300 - 312
  • [5] Integrable sl(N, a",) tops as Calogero-Moser systems
    Smirnov, A. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) : 300 - 312
  • [6] Quantum vs classical Calogero-Moser systems
    Sasaki, Ryu
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 259 - 289
  • [7] Quantum versus classical integrability in Calogero-Moser systems
    Corrigan, E
    Sasaki, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (33): : 7017 - 7061
  • [8] Flows of Calogero-Moser Systems
    Ben-Zvi, David
    Nevins, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [9] The geometry of Calogero-Moser systems
    Hurtubise, J
    Nevins, T
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2091 - 2116
  • [10] Geometry of Calogero-Moser systems
    Biswas, Indranil
    Hurtubise, Jacques
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)