Microstructure evolution and mechanical properties of diffusion bonding CoCrCuFeNi high entropy alloy to Inconel 600 alloy

被引:0
|
作者
Zhao, Honglong [1 ]
Zhou, Fugui [2 ]
Shen, Xuefeng [3 ]
Li, Juan [2 ]
Qin, Qingdong [1 ,2 ]
Wu, Jianming [3 ]
机构
[1] Guizhou Inst Technol, Key Lab Light Met Mat Proc Technol Guizhou Prov, Guiyang 550003, Peoples R China
[2] Guizhou Inst Technol, Dept Mat & Energy Engn, Guiyang 550003, Peoples R China
[3] 2011 Special Funct Mat Collaborat Innovat Ctr Guiz, Guiyang 550003, Peoples R China
关键词
Diffusion bonding; High entropy alloy; Inconel; 600; Microstructure; Mechanical properties; GRAIN-BOUNDARY; SEGREGATION; SUPERALLOY; ELEMENTS; HEAT;
D O I
10.1016/j.jmrt.2024.11.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the CoCrCuFeNi high entropy alloy was diffusion bonded with the Inconel 600 superalloy at bonding temperatures ranging from 950 to 1100 degrees C for a bonding time of 2 h under a pressure of 20 MPa in a vacuum. The microstructure and mechanical properties of the diffusion bonded joints were investigated. The diffusion zone of the welded joint contains of two distinct zones: a coarse grain zone (on the Inconel 600 superalloy side) and the diffusion interface layer. The blocks Cr23C6 phase and Cu-rich phase were formed in the diffusion interface layer at 950 degrees C. As the bonding temperature increased, the Cr23C6 gradually disappeared and the blocks Cu-rich phase transformed into nano Cu-rich precipitate in the diffusion interlayer at 1100 degrees C. The hardness of the interface layer was significantly higher than that of the base metal at all temperature. When the bonding temperature increased from 950 degrees C to 1100 degrees C, the ultimate tensile strength of the welded joints increased from 521 MPa to 558 MPa, and the elongation increased from 10.3 % to 31.2%, respectively. The ultimate tensile strength reached 96 % and 82 % than that of the CoCrCuFeNi HEA and Inconel 600 base metal, and the elongation is comparable to that of the base metals. All the welded joint fracture near the diffusion interface layer. As the bonding temperature increased, the fracture mode of the joint transformed brittle to ductile. At an elevated temperature of 300 degrees C, the ultimate tensile strength and elongation of the welded joint are 325 MPa and 9.8 %, respectively. The welded joint exhibits a mixed fracture mode of ductile and cleavage fractures.
引用
收藏
页码:8372 / 8390
页数:19
相关论文
共 50 条
  • [1] Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings
    Cheng, Jiangbo
    Liu, Dan
    Liang, Xiubing
    Chen, Yongxiong
    SURFACE & COATINGS TECHNOLOGY, 2015, 281 : 109 - 116
  • [2] Interfacial microstructure and mechanical properties of tungsten alloy/steel diffusion bonding joint using CrFeCoNiCu high entropy alloy interlayer
    Zhang, Mengxiang
    Zhu, Wentan
    Meng, Shangru
    Liu, Wensheng
    Ma, Yunzhu
    Wang, Jianning
    Sun, Huanteng
    Cai, Qingshan
    MATERIALS CHARACTERIZATION, 2023, 199
  • [3] Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy
    Du, Y. J.
    Xiong, J. T.
    Jin, F.
    Li, S. W.
    Yuan, L.
    Feng, D.
    Shi, J. M.
    Li, J. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [4] Microstructure Evolution and Mechanical Properties of a TiAl Alloy Modified by High-Entropy Alloy Additions
    Hu, Qiang
    Wang, Qiang
    Wu, Xinling
    Zeng, Liangcai
    Liu, Xinwang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (20) : 9121 - 9136
  • [5] Microstructure Evolution and Mechanical Properties of a TiAl Alloy Modified by High-Entropy Alloy Additions
    Qiang Hu
    Qiang Wang
    Xinling Wu
    Liangcai Zeng
    Xinwang Liu
    Journal of Materials Engineering and Performance, 2023, 32 : 9121 - 9136
  • [6] Microstructure evolution and mechanical properties of diffusion bonding high Nb containing TiAl alloy to Ti2AlNb alloy
    Zhu, Lei
    Li, Jinshan
    Tang, Bin
    Liu, Yan
    Zhang, Mengqi
    Li, Lei
    Kou, Hongchao
    VACUUM, 2019, 164 : 140 - 148
  • [7] Microstructure evolution and mechanical properties of pulse high current diffusion bonding γ-TiAl alloy to Ti2AlNb alloy
    Fan, Jiafeng
    Li, Xiaoqiang
    Pan, Cunliang
    Zhu, Zhenceng
    Wang, Xuecheng
    Qu, Shengguan
    Yang, Chao
    Hou, Jinbao
    INTERMETALLICS, 2023, 163
  • [8] Microstructure and Mechanical Properties of Nanocrystalline CoCrCuFeNi High-Entropy Alloy Coating Manufactured by Atmospheric Plasma Spraying
    Tian, Lihui
    Jiang, Zheng
    Zhang, Hui
    Shi, Jian
    Liu, Chuan
    Chen, Shuai
    JOM, 2025, 77 (02) : 505 - 516
  • [9] Effect of Temperature on Microstructure and Properties of CoCrCuFeNi High Entropy Alloy by Spark Plasma Sintering
    Xia, Hongyong
    Dong, Longlong
    Huo, Wangtu
    Tian, Ning
    Zhou, Yue
    Zhao, Panchao
    Zhou, Lian
    Zhang, Yusheng
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2021, 50 (09): : 3327 - 3334
  • [10] Microstructure and tensile properties of Al0.5CoCrCuFeNi high-entropy alloy
    Sheng, Hong Fei
    Peng, Liang Ming
    RESEARCH IN MECHANICAL ENGINEERING AND MATERIAL SCIENCE, 2014, 456 : 494 - 497