Metalloporphyrin-modified semiconductors for solar fuel production

被引:0
|
作者
Khusnutdinova D. [1 ]
Beiler A.M. [1 ]
Wadsworth B.L. [1 ]
Jacob S.I. [1 ]
Moore G.F. [1 ]
机构
[1] School of Molecular Sciences, Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, 85287-1604, AZ
来源
Moore, G.F. (gfmoore@asu.edu) | 1600年 / Royal Society of Chemistry卷 / 08期
基金
美国国家科学基金会;
关键词
91;
D O I
10.1039/C6SC02664H
中图分类号
学科分类号
摘要
We report a direct one-step method to chemically graft metalloporphyrins to a visible-light-absorbing gallium phosphide semiconductor with the aim of constructing an integrated photocathode for light activating chemical transformations that include capturing, converting, and storing solar energy as fuels. Structural characterization of the hybrid assemblies is achieved using surface-sensitive spectroscopic methods, and functional performance for photoinduced hydrogen production is demonstrated via three-electrode electrochemical testing combined with photoproduct analysis using gas chromatography. Measurements of the total per geometric area porphyrin surface loadings using a cobalt-porphyrin based assembly indicate a turnover frequency ≥3.9 H2 molecules per site per second, representing the highest reported to date for a molecular-catalyst-modified semiconductor photoelectrode operating at the H+/H2 equilibrium potential under 1-sun illumination. © The Royal Society of Chemistry.
引用
收藏
页码:253 / 259
页数:6
相关论文
共 50 条
  • [1] Metalloporphyrin-modified semiconductors for solar fuel production
    Khusnutdinova, D.
    Beiler, A. M.
    Wadsworth, B. L.
    Jacob, S. I.
    Moore, G. F.
    CHEMICAL SCIENCE, 2017, 8 (01) : 253 - 259
  • [2] Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors
    Nishiori, Daiki
    Wadsworth, Brian L.
    Cruz, Edgar A. Reyes
    Nguyen, Nghi P.
    Hensleigh, Lillian K.
    Karcher, Timothy
    Moore, Gary F.
    PHOTOSYNTHESIS RESEARCH, 2022, 151 (02) : 1 - 10
  • [3] Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors
    Daiki Nishiori
    Brian L. Wadsworth
    Edgar A. Reyes Cruz
    Nghi P. Nguyen
    Lillian K. Hensleigh
    Timothy Karcher
    Gary F. Moore
    Photosynthesis Research, 2022, 151 : 1 - 10
  • [4] Metalloporphyrin-Modified Carbon Nanotube Layers for Gas Microsensors
    Penza, M.
    Rossi, R.
    Alvisi, M.
    Valerini, D.
    Serra, E.
    Paolesse, R.
    Martinelli, E.
    D'Amico, A.
    Di Natale, C.
    SENSOR LETTERS, 2011, 9 (02) : 913 - 919
  • [5] SURFACE RAMAN DIFFERENCE SPECTROSCOPY OF METALLOPORPHYRIN-MODIFIED ELECTRODES
    GINLEY, DS
    SHELNUTT, JA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (03) : C113 - C113
  • [6] Metalloporphyrin-modified perovskite-type oxide for the electroreduction of oxygen
    Nagai, Tsukasa
    Yamazaki, Shin-ichi
    Asahi, Masafumi
    Siroma, Zyun
    Fujiwara, Naoko
    Ioroi, Tsutomu
    JOURNAL OF POWER SOURCES, 2015, 293 : 760 - 766
  • [7] Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline
    Han, Hongsa
    Wang, Yanqing
    Zhang, Yunlong
    Cong, Yuanyuan
    Qin, Jiaqi
    Gao, Rui
    Chai, Chunxiao
    Song, Yujiang
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (09)
  • [8] Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode
    Dong, Yapeng
    Nie, Rong
    Wang, Jixian
    Yu, Xiaogang
    Tu, Pengcheng
    Chen, Jiazang
    Jing, Huanwang
    CHINESE JOURNAL OF CATALYSIS, 2019, 40 (08) : 1222 - 1230
  • [9] Emerging materials for semiconductors: Oxides for stable solar fuel production
    Evans, Jake
    AMERICAN CERAMIC SOCIETY BULLETIN, 2022, 101 (03): : 48 - 48
  • [10] Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications
    Lu, Yang
    Li, Wenyan
    Fan, Yiyi
    Cheng, Lei
    Tang, Yawen
    Sun, Hanjun
    SMALL, 2024, 20 (51)