Optimality conditions for irregular inequality-constrained problems

被引:0
|
作者
Izmailov, A.F. [1 ]
Solodov, M.V. [1 ]
机构
[1] Computing Center, Russian Academy of Sciences, Vavilova Str. 40, Moscow, GSP-1, Russia
关键词
Constraint qualification - Optimality conditions - Tangent cone;
D O I
10.1137/S0363012999357549
中图分类号
学科分类号
摘要
引用
收藏
页码:1280 / 1295
相关论文
共 50 条
  • [1] Optimality conditions for irregular inequality-constrained problems
    Izmailov, AF
    Solodov, MV
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (04) : 1280 - 1295
  • [2] Higher order optimality conditions for inequality-constrained problems
    Ivanov, Vsevolod I.
    APPLICABLE ANALYSIS, 2013, 92 (12) : 2612 - 2629
  • [3] The p-th order necessary optimality conditions for inequality-constrained optimization problems
    Brezhneva, O
    Tret'yakov, A
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 903 - 911
  • [4] Optimality-based domain reduction for inequality-constrained NLP and MINLP problems
    Zhang, Yi
    Sahinidis, Nikolaos V.
    Nohra, Carlos
    Rong, Gang
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (03) : 425 - 454
  • [5] Optimality-based domain reduction for inequality-constrained NLP and MINLP problems
    Yi Zhang
    Nikolaos V. Sahinidis
    Carlos Nohra
    Gang Rong
    Journal of Global Optimization, 2020, 77 : 425 - 454
  • [6] Second-Order Optimality Conditions in Locally Lipschitz Inequality-Constrained Multiobjective Optimization
    Constantin, Elena
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (01) : 50 - 67
  • [7] Second-Order Optimality Conditions in Locally Lipschitz Inequality-Constrained Multiobjective Optimization
    Elena Constantin
    Journal of Optimization Theory and Applications, 2020, 186 : 50 - 67
  • [8] Algorithm for inequality-constrained least squares problems
    Peng, Jing-Jing
    Liao, An-Ping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 249 - 258
  • [9] On some variational inequality-constrained control problems
    Treanta, Savin
    Antczak, Tadeusz
    Saeed, Tareq
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [10] Algorithm for inequality-constrained least squares problems
    Jing-Jing Peng
    An-Ping Liao
    Computational and Applied Mathematics, 2017, 36 : 249 - 258