A primal-dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs

被引:0
|
作者
Liu, Xin-Wei [1 ]
Dai, Yu-Hong [2 ]
Huang, Ya-Kui [1 ]
机构
[1] Institute of Mathematics, Hebei University of Technology, Xiping Road No. 5340, Beichen District, Tianjin,300401, China
[2] LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road No. 55, Haidian District, Beijing,100190, China
来源
关键词
921.6 Numerical Methods - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
43
引用
收藏
页码:351 / 382
相关论文
共 50 条
  • [1] A primal-dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs
    Liu, Xin-Wei
    Dai, Yu-Hong
    Huang, Ya-Kui
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2022, 96 (03) : 351 - 382
  • [2] A primal-dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs
    Xin-Wei Liu
    Yu-Hong Dai
    Ya-Kui Huang
    Mathematical Methods of Operations Research, 2022, 96 : 351 - 382
  • [3] A GLOBALLY CONVERGENT PRIMAL-DUAL INTERIOR-POINT RELAXATION METHOD FOR NONLINEAR PROGRAMS
    Liu, Xin-Wei
    Dai, Yu-Hong
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1301 - 1329
  • [4] A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties
    Tits, AL
    Wächter, A
    Bakhtiari, S
    Urban, TJ
    Lawrence, CT
    SIAM JOURNAL ON OPTIMIZATION, 2003, 14 (01) : 173 - 199
  • [5] A PRIMAL-DUAL INTERIOR-POINT METHOD CAPABLE OF RAPIDLY DETECTING INFEASIBILITY FOR NONLINEAR PROGRAMS
    Dai, Yu-Hong
    Liu, Xin-Wei
    Sun, Jie
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (02) : 1009 - 1035
  • [6] A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs
    Dai, Yu-Hong
    Liu, Xin-Wei
    Sun, Jie
    Liu, Xin-Wei (mathlxw@hebut.edu.cn), 1600, American Institute of Mathematical Sciences (16): : 1009 - 1035
  • [7] A robust primal-dual interior-point algorithm for nonlinear programs
    Liu, XW
    Sun, J
    SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (04) : 1163 - 1186
  • [8] Local analysis of the feasible primal-dual interior-point method
    Silva, R.
    Soares, J.
    Vicente, L. N.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (01) : 41 - 57
  • [9] Local analysis of the feasible primal-dual interior-point method
    R. Silva
    J. Soares
    L. N. Vicente
    Computational Optimization and Applications, 2008, 40 : 41 - 57
  • [10] A primal-dual regularized interior-point method for convex quadratic programs
    Friedlander M.P.
    Orban D.
    Friedlander, M. P. (mpf@cs.ubc.ca), 1600, Springer Verlag (04): : 71 - 107