Application of machine learning for classifying anemia type to improve healthcare quality

被引:0
|
作者
Yang, Wan-Hua [1 ,2 ,3 ]
Cheng, Chuen-Sheng [1 ]
机构
[1] Industrial Engineering and Management Department, Yuan Ze University, Taiwan
[2] Pathology Laboratory, Hsinchu Branch, Taipei Veterans General Hospital, Taiwan
[3] Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Taiwan
来源
Journal of Quality | 2021年 / 28卷 / 04期
关键词
Histology - Blood - Classification (of information) - Hospitals - Decision trees - Diagnosis - Tissue - Statistical tests;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:283 / 295
相关论文
共 50 条
  • [1] Classifying Restatements: An Application of Machine Learning and Textual Analytics
    Hayes, Louise
    Boritz, J. Efrim
    JOURNAL OF INFORMATION SYSTEMS, 2021, 35 (03) : 107 - 131
  • [2] An Innovative Machine Learning Approach for Classifying ECG Signals in Healthcare Devices
    Kishore, B.
    Reddy, A. Nanda Gopal
    Chillara, Anila Kumar
    Hatamleh, Wesam Atef
    Haouam, Kamel Dine
    Verma, Rohit
    Dhevi, B. Lakshmi
    Atiglah, Henry Kwame
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [3] Machine learning for classifying learning objects
    Ranganathan, Girish R.
    Biletskiy, Yevgen
    MacIsaac, Dawn
    2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 739 - +
  • [4] APPLICATIONS OF DEEP LEARNING TO IMPROVE THE QUALITY OF HEALTHCARE OUTCOMES
    Al-Asmari, Abdulrhman Samman
    INTERNATIONAL JOURNAL FOR QUALITY RESEARCH, 2022, 16 (01) : 77 - 92
  • [5] Machine learning application for classifying serum uric acid level with photoplethysmogram
    Nayan, Nazrul Anuar
    Ab Hamid, Hafifah
    Suboh, Mohd Zubir
    Aminaldin, Nurliyana Muhammad
    Azizul, Nurin Izzati Mohamad
    Nizar, Mohamad Nazhan Mohd
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 522 - 527
  • [6] Classifying the type of delivery from cardiotocographic signals: A machine learning approach
    Ricciardi, C.
    Improta, G.
    Amato, F.
    Cesarelli, G.
    Romano, M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196
  • [7] DiscimusRw: An E-Learning Web Application for Classifying Random Walks with Machine Learning
    Mousa, Afrah Mahmoud
    Auth, Thorsten
    Samara, Anas
    Odeh, Suhail
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 188 - 192
  • [8] Learning how to improve healthcare delivery: the Swedish Quality Registers
    Adami, H. -O.
    Hernan, M. A.
    JOURNAL OF INTERNAL MEDICINE, 2015, 277 (01) : 87 - 89
  • [9] Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study
    Carlos Bravo-Rodriguez, Juan
    Torres, Francisco J.
    Borras, Maria D.
    ENERGIES, 2020, 13 (11)
  • [10] APPLICATION OF MACHINE LEARNING IN A LINKED MULTICENTER DATASET: CLASSIFYING MODS IN SEPTIC SHOCK
    Brennan, Margaret
    Lindell, Robert
    Nishisaki, Akira
    Fitzgerald, Julie
    Dziorny, Adam
    CRITICAL CARE MEDICINE, 2022, 50 (01) : 721 - 721