Handling missing values and imbalanced classes in machine learning to predict consumer preference: Demonstrations and comparisons to prominent methods

被引:0
|
作者
Liu, Yahui [1 ]
Li, Bin [2 ]
Yang, Shuai [1 ]
Li, Zhen [3 ]
机构
[1] Glorious Sun School of Business and Management, Donghua University, 1882 West Yan'an Road, Shanghai,200051, China
[2] Wright State University, 3640 Colonel Glenn Hwy., Dayton,OH,45435-0001, United States
[3] Faculty of Business and Commerce, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka,564-8680, Japan
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 14 条
  • [1] Handling missing values and imbalanced classes in machine learning to predict consumer preference: Demonstrations and comparisons to prominent methods
    Liu, Yahui
    Li, Bin
    Yang, Shuai
    Li, Zhen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [2] Missing values handling for machine learning portfolios
    Chen, Andrew Y.
    McCoy, Jack
    JOURNAL OF FINANCIAL ECONOMICS, 2024, 155
  • [3] Effective Handling of Missing Values in Datasets for Classification Using Machine Learning Methods
    Palanivinayagam, Ashokkumar
    Damasevicius, Robertas
    INFORMATION, 2023, 14 (02)
  • [4] Machine Learning with Missing Attributes Values Methods Implementation
    Gallova, Stefania
    Augustin, Michal
    Altahr, Sakena Saied Alsadig
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2015, VOL II, 2015, : 829 - 834
  • [5] Handling missing values in machine learning to predict major adverse cardiac events: insights from REFINE SPECT registry
    Rios, Richard
    Miller, Robert
    Sharir, Tali
    Einstein, Andrew
    Fish, Mathews
    Ruddy, Terrence
    Kaufmann, Philipp
    Sinusas, Albert
    Miller, Edward
    Bateman, Timothy
    Dorbala, Sharmila
    Di Carli, Marcelo
    Liang, Joanna
    Dey, Damini
    Berman, Daniel
    Slomka, Piotr
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [6] A Comprehensive Machine Learning Approach for Early Detection of Diabetes on Imbalanced Data with Missing and Outlier Values
    Yogendra Singh
    Mahendra Tiwari
    SN Computer Science, 6 (3)
  • [7] Handling high-dimensional data with missing values by modern machine learning techniques
    Chen, Sixia
    Xu, Chao
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (03) : 786 - 804
  • [8] An Enhanced Machine Learning Framework for Type 2 Diabetes Classification Using Imbalanced Data with Missing Values
    Roy, Kumarmangal
    Ahmad, Muneer
    Waqar, Kinza
    Priyaah, Kirthanaah
    Nebhen, Jamel
    Alshamrani, Sultan S.
    Raza, Muhammad Ahsan
    Ali, Ihsan
    COMPLEXITY, 2021, 2021
  • [9] Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry
    Rios, Richard
    Miller, Robert J. H.
    Manral, Nipun
    Sharir, Tali
    Einstein, Andrew J.
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp A.
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Van Kriekinge, Serge D.
    Kavanagh, Paul B.
    Parekh, Tejas
    Liang, Jonna X.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [10] Detection of attacks on software defined networks using machine learning techniques and imbalanced data handling methods
    Hassan, Heba A.
    Hemdan, Ezz El-Din
    El-Shafai, Walid
    Shokair, Mona
    Abd El-Samie, Fathi E.
    SECURITY AND PRIVACY, 2024, 7 (02)