Coding and decoding algorithms for systematic permutation codes at the Chebyshev distance

被引:0
|
作者
Han H. [1 ]
Mu J. [1 ]
Jiao X. [1 ]
机构
[1] School of Computer Science and Technology, Xidian Univ., Xi'an
来源
Mu, Jianjun (jjmu@xidian.edu.cn) | 2018年 / Science Press卷 / 45期
关键词
Chebyshev metric; Decoding; Encoding; Permutation codes; Rank modulation; Systematic permutation codes;
D O I
10.3969/j.issn.1001-2400.2018.06.005
中图分类号
学科分类号
摘要
Since existing [k+n,k,d] systematic permutation codes which can correct limited-magnitude errors lack encoding and decoding procedures in the Chebyshev metric, an encoding algorithm for these systematic permutation codes is proposed by using the ranking and unranking mappings in the symmetric group and the interleaving technology of (n,M,d) permutation codes in the Chebyshev metric. Moreover, a decoding method of [k+n,k,d] systematic permutation codes is presented by using the the ranking and unranking mappings in the symmetric group and the projection technology for (n,M,d) permutation codes in the Chebyshev metric. The correctness of the proposed encoding and decoding methods for systematic permutation codes is illustrated by some calculation examples. © 2018, The Editorial Board of Journal of Xidian University. All right reserved.
引用
收藏
页码:26 / 30and98
页数:3072
相关论文
共 12 条
  • [1] Jiang A., Mateescu R., Schwartz M., Et al., Rank Modulation for Flash Memories, IEEE Transactions on Information Theory, 55, 6, pp. 2659-2673, (2009)
  • [2] Buzaglo S., Yaakobi E., On the Capacity of Constrained Permutation Codes for Rank Modulation, IEEE Transactions on Information Theory, 62, 4, pp. 1649-1666, (2016)
  • [3] Yehezkeally Y., Schwartz M., Limited-magnitude Error-correcting Gray Codes for Rank Modulation, IEEE Transactions on Information Theory, 63, 9, pp. 5774-5792, (2017)
  • [4] Holroyd A.E., Perfect Snake-in-the-box Codes for Rank Modulation, IEEE Transactions on Information Theory, 63, 1, pp. 104-110, (2017)
  • [5] Schwartz M., Vontobel P.O., Improved Lower Bounds on the Size of Balls over Permutations with the Infinity Metric, IEEE Transactions on Information Theory, 63, 10, pp. 6227-6239, (2017)
  • [6] Kong J., Hagiwara M., Multipermutation Ulam Sphere Analysis toward Characterizing Maximal Code Size, Proceedings of the 2017 IEEE International Symposium on Information Theory, pp. 1628-1632, (2017)
  • [7] Jiang A., Schwartz M., Bruck J., Correcting Charge-constrained Errors in the Rank-modulation Scheme, IEEE Transactions on Information Theory, 56, 5, pp. 2112-2120, (2010)
  • [8] Tamo I., Schwartz M., Correcting Limited-magnitude Errors in the Rank-modulation Scheme, IEEE Transactions on Information Theory, 56, 6, pp. 2551-2560, (2010)
  • [9] Zhou H., Schwartz M., Jiang A., Et al., Systematic Error-correcting Codes for Rank Modulation, IEEE Transactions on Information Theory, 61, 1, pp. 17-32, (2015)
  • [10] Farnoud F., Skachekv, Milenkovic O., Error-correction in Flash Memories via Codes in the Ulam Metric, IEEE Transactions on Information Theory, 59, 5, pp. 3003-3020, (2013)