High-coherence quantum acoustics with planar superconducting qubits

被引:0
|
作者
Franse, W. J. M. [1 ]
Potts, C. A. [1 ,2 ,3 ]
Bittencourt, V. A. S. V. [4 ]
Metelmann, A. [4 ,5 ,6 ]
Steele, G. A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[2] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Copenhagen, Denmark
[4] Univ Strasbourg, ISIS, UMR 7006, F-67000 Strasbourg, France
[5] Karlsruhe Inst Technol, Inst Theory Condensed Matter, D-76131 Karlsruhe, Germany
[6] Karlsruhe Inst Technol, Inst Quantum Mat & Technol, D-76131 Karlsruhe, Germany
基金
荷兰研究理事会; 加拿大自然科学与工程研究理事会;
关键词
STATES;
D O I
10.1063/5.0230359
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum acoustics is an emerging platform for hybrid quantum technologies enabling quantum coherent control of mechanical vibrations. High-overtone bulk acoustic resonators (HBARs) represent an attractive mechanical implementation of quantum acoustics due to their potential for exceptionally high mechanical coherence. Here, we demonstrate an implementation of high-coherence HBAR quantum acoustics integrated with a planar superconducting qubit architecture, demonstrating an acoustically induced-transparency regime of high cooperativity and weak coupling, analogous to the electrically induced transparency in atomic physics. Demonstrating high-coherence quantum acoustics with planar superconducting devices enables interesting applications for acoustic resonators in quantum technologies.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Engineering high-coherence superconducting qubits
    Irfan Siddiqi
    Nature Reviews Materials, 2021, 6 : 875 - 891
  • [2] Engineering high-coherence superconducting qubits
    Siddiqi, Irfan
    NATURE REVIEWS MATERIALS, 2021, 6 (10) : 875 - 891
  • [3] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    SCIENCE, 2017, 358 (6360) : 199 - 202
  • [4] High-Coherence Hybrid Superconducting Qubit
    Steffen, Matthias
    Kumar, Shwetank
    DiVincenzo, David P.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary Beth
    Ketchen, Mark B.
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [5] Materials physics and quantum coherence in superconducting qubits
    Beasley, MR
    JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (05): : 663 - 667
  • [6] Materials Physics and Quantum Coherence in Superconducting Qubits
    M. R. Beasley
    Journal of Superconductivity, 2004, 17 : 663 - 667
  • [7] Overlap junctions for high coherence superconducting qubits
    Wu, X.
    Long, J. L.
    Ku, H. S.
    Lake, R. E.
    Bal, M.
    Pappas, D. P.
    APPLIED PHYSICS LETTERS, 2017, 111 (03)
  • [8] High coherence plane breaking packaging for superconducting qubits
    Bronn, Nicholas T.
    Adiga, Vivekananda P.
    Olivadese, Salvatore B.
    Wu, Xian
    Chow, Jerry M.
    Pappas, David P.
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (02):
  • [9] High-Coherence Fluxonium Qubit
    Nguyen, Long B.
    Lin, Yen-Hsiang
    Somoroff, Aaron
    Mencia, Raymond
    Grabon, Nicholas
    Manucharyan, Vladimir E.
    PHYSICAL REVIEW X, 2019, 9 (04):
  • [10] Fast, Lifetime-Preserving Readout for High-Coherence Quantum Annealers
    Grover, Jeffrey A.
    Basham, James, I
    Marakov, Alexander
    Disseler, Steven M.
    Hinkey, Robert T.
    Khalil, Moe
    Stegen, Zachary A.
    Chamberlin, Thomas
    DeGottardi, Wade
    Clarke, David J.
    Medford, James R.
    Strand, Joel D.
    Stoutimore, Micah J. A.
    Novikov, Sergey
    Ferguson, David G.
    Lidar, Daniel
    Zick, Kenneth M.
    Przybysz, Anthony J.
    PRX QUANTUM, 2020, 1 (02):