Central schemes for porous media flows

被引:0
|
作者
Abreu, E. [1 ]
Pereira, F. [2 ]
Ribeiro, S. [3 ]
机构
[1] Instituto Nacional de Matemática Pura e Aplicada, 22460-320 Rio de Janeiro, RJ, Brazil
[2] Department of Mathematics and School of Energy Resources, University of Wyoming, Laramie, WY 82071-3036, United States
[3] Departamento de Ciências Exatas, Universidade Federal Fluminense, 27255-250 Volta Redonda, RJ, Brazil
关键词
Computational fluid dynamics - Numerical methods - Petroleum reservoir engineering - Petroleum reservoirs - Physical properties - Porous materials - Velocity;
D O I
10.1590/s1807-03022009000100005
中图分类号
学科分类号
摘要
We are concerned with central differencing schemes for solving scalar hyperbolic conservation laws arising in the simulation of multiphase flows in heterogeneous porous media. We compare the Kurganov-Tadmor (KT) [3] semi-discrete central scheme with the Nessyahu-Tadmor (NT) [27] central scheme. The KT scheme uses more precise information about the local speeds of propagation together with integration over nonuniform control volumes, which contain the Riemann fans. These methods can accurately resolve sharp fronts in the fluid saturations without introducing spurious oscillations or excessive numerical diffusion. We first discuss the coupling of these methods with velocity fields approximated by mixed finite elements. Then, numerical simulations are presented for two-phase, two-dimensional flow problems in multi-scale heterogeneous petroleum reservoirs. We find the KT scheme to be considerably less diffusive, particularly in the presence of high permeability flow channels, which lead to strong restrictions on the time step selection; however, the KT scheme may produce incorrect boundary behavior. © 2009 SBMAC.
引用
收藏
页码:87 / 110
相关论文
共 50 条
  • [1] Central schemes for porous media flows
    Abreu, E.
    Pereira, F.
    Ribeiro, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2009, 28 (01): : 87 - 110
  • [2] Semi-Godunov schemes for multiphase flows in porous media
    Karlsen, K. H.
    Mishra, S.
    Risebro, N. H.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (09) : 2322 - 2336
  • [3] Enhancing Computational Precision for Lattice Boltzmann Schemes in Porous Media Flows
    Gray, Farrel
    Boek, Edo
    COMPUTATION, 2016, 4 (01):
  • [4] Simulation of multiphase porous media flows with minimising movement and finite volume schemes
    Cances, Clement
    Gallouet, Thomas
    Laborde, Maxime
    Monsaingeon, Leonard
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) : 1123 - 1152
  • [5] SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA
    Eymard, Robert
    Guichard, Cindy
    Herbin, Raphaele
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 265 - 290
  • [6] Resurgence flows in porous media
    Adler, P. M.
    Mityushev, V. M.
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [7] Magnetohydrodynamic flows in porous media
    Geindreau, C
    Auriault, JL
    JOURNAL OF FLUID MECHANICS, 2002, 466 : 343 - 363
  • [8] Elastoviscoplastic flows in porous media
    De Vita, F.
    Rosti, M. E.
    Izbassarov, D.
    Duffo, L.
    Tammisola, O.
    Hormozi, S.
    Brandt, L.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 258 : 10 - 21
  • [9] Stabilization of flows through porous media
    Escher, Joachim
    Feng, Zhaoyong
    JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) : 567 - 586
  • [10] Almost Parallel Flows in Porous Media
    Armiti-Juber, Alaa
    Rohde, Christian
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 873 - 881