A new algorithm of asymptotic homogenization method for predicting the effective thermal conductivity and its implementation of periodic composite materials

被引:0
|
作者
Zhang Y. [1 ]
Shang S. [1 ]
Liang Y. [1 ]
机构
[1] Department of Engineering Mechanics, State Key Laboratory of Structure Analysis for Industrial Equipment, Dalian University of Technology, Dalian
关键词
Asymptotic homogenization method; Effective thermal conductivity; Material design; Performance prediction; Periodic composite material;
D O I
10.13801/j.cnki.fhclxb.20170411.001
中图分类号
学科分类号
摘要
Asymptotic homogenization (AH) method has rigorous mathematical foundation and can provide an accurate solution for the effective thermal conductivity (ETC) of periodic composite materials. A new implementation algorithm based AH method predicting the ETC of periodic composite materials was presented. Compared with the original implementation algorithm, the new implementation algorithm has two advantages: Its implementation as simple as representative volume element (RVE) method. The commercial finite element analysis (FEA) software as black box is used and the ETC of periodic composite materials through several simple steps can be obtained. The new implementation of AH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the ETC of complex structure. This work is expected to greatly promote the widespread use of AH in predicting the ETC of periodic composite materials. © 2018, Editorial Office of Acta Materiae Compositae Sinica. All right reserved.
引用
收藏
页码:208 / 217
页数:9
相关论文
共 30 条
  • [1] Progelhof R., Throne J., Ruetsch R., Methods for predicting the thermal conductivity of composite systems: A review, Polymer Engineering & Science, 16, 9, pp. 615-625, (1976)
  • [2] Yan P., Jiang C.P., Song F., Et al., Estimation of transverse thermal conductivity of doubly periodic fiber reinforced composites, Chinese Journal of Aeronautics, 23, 1, pp. 54-60, (2010)
  • [3] Fu X., Viskanta R., Gore J., Prediction of effective thermal conductivity of cellular ceramics, International Communications in Heat and Mass Transfer, 25, 2, pp. 151-160, (1998)
  • [4] Nait-Ali B., Haberko K., Vesteghem H., Et al., Thermal conductivity of highly porous zirconia, Journal of the European Ceramic Society, 26, 16, pp. 3567-3574, (2006)
  • [5] Yang X.H., Lu T.J., Kim T., Effective thermal conductivity modelling for closed-cell porous media with analytical shape factors, Transport in Porous Media, 100, 2, pp. 211-224, (2013)
  • [6] Yang X.H., Bai J.X., Yan H.B., Et al., An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Transport in Porous Media, 102, 3, pp. 403-426, (2014)
  • [7] Ashby M., Designing architectured materials, Scripta Materialia, 68, 1, pp. 4-7, (2013)
  • [8] Brechet Y., Embury J.D., Architectured materials: Expanding materials space, Scripta Materialia, 68, 1, pp. 1-3, (2013)
  • [9] Gou J.J., Dai Y.J., Li S., Et al., Numerical study of effective thermal conductivities of plain woven composites by unit cells of different sizes, International Journal of Heat and Mass Transfer, 91, pp. 829-840, (2015)
  • [10] Moumen A.E., Kanit T., Lmad A., Et al., Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches, Computational Materials Science, 97, pp. 148-158, (2015)