Behavior of hybrid steel and recycled polymer fibres reinforced rubberized concrete under flexural fatigue loading

被引:0
|
作者
Li, Yaxiong [1 ]
Chen, Meng [1 ,2 ]
Zhang, Tong [1 ]
Zhang, Mingzhong [3 ]
机构
[1] Northeastern Univ, Sch Resources & Civil Engn, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Frontier Technol Low Carbon Steelmaki, Shenyang 110819, Peoples R China
[3] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Flexural fatigue life; Hybrid fibre reinforced concrete; Recycled rubber granule; Recycled tyre polymer fibre; Multiscale synergistic effect; SELF-COMPACTING CONCRETE; LIFE DISTRIBUTIONS; COMPRESSIVE BEHAVIOR; FIBROUS CONCRETE; PERFORMANCE; PREDICTION; PLAIN;
D O I
10.1016/j.conbuildmat.2024.138936
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recycled rubber granules (RRG) and recycled tyre polymer fibre (RTPF) as concrete reinforcement are promising for developing eco-friendly materials and tackling solid waste disposal problems. This paper experimentally investigates the multiscale synergistic effects of RTPF (0.05-0.2 vol%), RRG (0.05-0.2 vol%) and steel fibre (SF, 0.5-1.5 vol%) on the improvement of concrete flexural fatigue behavior. Results point that the additions of RTPF and RRG from 0.05 vol% to 0.1 vol% would increase the fatigue life by 2.56 %-9.96 %, while increasing the contents of SF from 0.5 vol% to 1.5 vol% would increase that by 18.97 %-39.35 %. The fatigue life of all mixtures obeyed a two-parameter Weibull distribution. The utilization of the developed double-logarithm fatigue equation in fatigue strength estimation was accurate at various failure probabilities (correlation coefficients in the range of 0.9237-0.9603). The fatigue failure evolution process for each mixture was subdivided into three stages, including rapid developing stage I, steady developing stage II and dramatical damage stage III. The fatigue failure modes and microstructural analysis revealed that the multiscale combination among SF, RTPF and RRG can control the crack formation and expansion and delay the fatigue damage. Considering the fatigue life and evolution of fatigue damage, the optimal dosage of SF, RTPF and RRG is 1.5 vol%, 0.1 vol% and 0.1 vol%, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Steel Fiber Reinforced Concrete Fatigue Life Under Flexural Loading
    Monteiro, Vitor
    Iranildo, Silva Junior
    Daniel, Cardoso
    Silva, Flavio de Andrade
    TRANSFORMING CONSTRUCTION: ADVANCES IN FIBER REINFORCED CONCRETE, BEFIB 2024, 2024, 54 : 381 - 389
  • [2] Flexural Behavior of Steel Fiber-Reinforced Rubberized Concrete
    Abaza, Osama A.
    Hussein, Zaids S.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (01)
  • [3] A Study on the Residual Fatigue Strain and Damage of Steel Fiber Reinforced Recycled Concrete Under Constant Amplitude Flexural Fatigue Loading
    Yang Runnian
    Wei Demin
    JOURNAL OF TESTING AND EVALUATION, 2013, 41 (03) : 465 - 470
  • [4] Flexural Characteristic of Rubberized Hybrid Concrete Reinforced With Steel and Synthetic Fibers
    Park, Yeonho
    Abolmaali, Ali
    Mohammadagha, Mohammad
    Lee, Swoo-Heon
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2014, 3 (01): : 495 - 508
  • [5] Flexural performance of reinforced concrete beams with recycled aggregates and steel fibres
    Anike, Emmanuel E.
    Saidani, Messaoud
    Olubanwo, Adegoke O.
    Anya, Uchechukwu C.
    STRUCTURES, 2022, 39 : 1264 - 1278
  • [6] Bond behavior of steel reinforced recycled concrete with consideration of fatigue loading history
    Bai, Guoliang
    Ma, Jinfeng
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (09): : 1 - 10
  • [7] Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers
    Alsaif, Abdulaziz S.
    Albidah, Abdulrahman S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 65 : 1230 - 1236
  • [8] Flexural Fatigue Behavior of PAN Fiber Reinforced Concrete under Cyclic Loading
    Zhuo, Weidong
    Ping ShangGuan
    Gu, Yin
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2143 - 2149
  • [9] Bond behavior of recycled tyre steel fiber reinforced concrete and basalt fiber-reinforced polymer bars under static and fatigue loading conditions
    Soltanzadeh, Fatemeh
    Edalat-Behbahani, Ali
    Pereira, Eduardo N. B.
    JOURNAL OF BUILDING ENGINEERING, 2023, 70
  • [10] Application of recycled steel fibres in concrete elements subjected to fatigue loading
    Francic Smrkic, Marina
    Damjanovic, Domagoj
    Baricevic, Ana
    GRADEVINAR, 2017, 69 (10): : 893 - 905