Regularized-renormalized-resummed loop corrected power spectrum of non-singular bounce with Primordial Black Hole formation

被引:1
|
作者
Choudhury, Sayantan [1 ]
Karde, Ahaskar [1 ]
Panda, Sudhakar [1 ,2 ]
Sengupta, Soumitra [3 ]
机构
[1] SGT Univ, Ctr Cosmol & Sci Popularizat CCSP, Delhi Ncr 122505, Haryana, India
[2] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar 752050, Odisha, India
[3] Indian Assoc Cultivat Sci, Sch Phys Sci, 2A & 2B Raja SC Mullick Rd, Kolkata 700032, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 11期
关键词
ENERGY-MOMENTUM TENSOR; EFFECTIVE-FIELD THEORY; ADIABATIC REGULARIZATION; FEYNMAN INTEGRALS; DARK-MATTER; CONSTRAINTS; INFLATION; MODEL; SCALE; CMB;
D O I
10.1140/epjc/s10052-024-13460-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a complete and consistent exposition of the regularization, renormalization, and resummation procedures in the setup of having a contraction and then non-singular bounce followed by inflation with a sharp transition from slow-roll (SR) to ultra-slow roll (USR) phase for generating primordial black holes (PBHs). We consider following an effective field theory (EFT) approach and study the quantum loop corrections to the power spectrum from each phase. We demonstrate the complete removal of quadratic UV divergences after renormalization and softened logarithmic IR divergences after resummation and illustrate the scheme-independent nature of our renormalization approach. We further show that the addition of a contracting and bouncing phase allows us to successfully generate PBHs of solar-mass order, MPBH similar to O(M circle dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\textrm{PBH}\sim \mathcal{O}(M_{\odot })$$\end{document}, by achieving the minimum e-folds during inflation to be Delta NTotal similar to O(60)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta N_{\textrm{Total}}\sim \mathcal{O}(60)$$\end{document} and in this process successfully evading the strict no-go theorem. We notice that varying the effective sound speed between 0.88 <= cs <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.88\leqslant c_{s}\leqslant 1$$\end{document}, allows the peak spectrum amplitude to lie within 10-3 <= A <= 10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{-3}\leqslant A \leqslant 10<^>{-2}$$\end{document}, indicating that causality and unitarity remain protected in the theory. We analyse PBHs in the extremely small, MPBH similar to O(10-33-10-27)M circle dot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\textrm{PBH}}\sim \mathcal{O}(10<^>{-33}-10<^>{-27})M_{\odot }$$\end{document}, and the large, MPBH similar to O(10-6-10-1)M circle dot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\textrm{PBH}}\sim \mathcal{O}(10<^>{-6}-10<^>{-1})M_{\odot }$$\end{document}, mass limits and confront the PBH abundance results with the latest microlensing constraints. We also study the cosmological beta functions across all phases and find their interpretation consistent in the context of bouncing and inflationary scenarios while satisfying the pivot scale normalization requirement. Further, we estimate the spectral distortion effects and shed light on controlling PBH overproduction.
引用
收藏
页数:88
相关论文
共 4 条
  • [1] Two-Loop Corrections in Power Spectrum in Models of Inflation with Primordial Black Hole Formation
    Firouzjahi, Hassan
    UNIVERSE, 2024, 10 (12)
  • [2] Pitfalls of a power-law parametrization of the primordial power spectrum for primordial black hole formation
    Green, Anne M.
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [3] A consistent model of non-singular Schwarzschild black hole in loop quantum gravity and its quasinormal modes
    Bouhmadi-Lopez, Mariam
    Brahma, Suddhasattwa
    Chen, Che-Yu
    Chen, Pisin
    Yeom, Dong-han
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (07):
  • [4] One-loop power spectrum in ultra slow-roll inflation and implications for primordial black hole dark matter
    Ballesteros, Guillermo
    Egea, Jesus Gambin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (07):