Bearing Fault Diagnosis Method Based on Complementary Feature Extraction and Fusion of Multisensor Data

被引:0
|
作者
Wang, Daichao [1 ]
Li, Yibin [1 ]
Song, Yan [1 ]
Jia, Lei [2 ]
Wen, Tao [3 ]
机构
[1] Shandong University at Qingdao, Institute of Marine Science and Technology, Shandong, Qingdao,266237, China
[2] Shandong University, School of Control Science and Engineering, Shandong, Jinan,250061, China
[3] Beijing Jiaotong University, School of Traffic and Transportation, Beijing,100044, China
基金
中国国家自然科学基金;
关键词
Data fusion - Data mining - Failure analysis - Fault detection;
D O I
暂无
中图分类号
学科分类号
摘要
Bearing is the key component of rotating machinery, so the fault diagnosis of bearing is important to improve the reliability of equipment operation. In recent years, the feature fusion method has been extensively explored in the fault diagnosis of bearings. However, the complementary fault features from multisensor data are difficult to be fully extracted, which will lead to the failure of achieving the expected diagnostic accuracy. This article proposes a multitask network for bearing fault diagnosis. The multihead attention is improved by 1-D convolutional neural network (CNN) to extract the deep features of multisensor data. The task of feature source discrimination allows the extracted features to contain complementary fault information as much as possible. Based on the complementary fault features, the accuracy of the fault category classification task can be greatly improved. To verify the effectiveness of the proposed method, the experiments are conducted on Paderborn bearing data set. The results show that the accuracy of the proposed method is greatly improved, which is much higher than the other methods. © 1963-2012 IEEE.
引用
收藏
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis Method Based on Complementary Feature Extraction and Fusion of Multisensor Data
    Wang, Daichao
    Li, Yibin
    Song, Yan
    Jia, Lei
    Wen, Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [2] Multisensor Feature Fusion Based Rolling Bearing Fault Diagnosis Method
    Tong, Jinyu
    Liu, Cang
    Pan, Haiyang
    Zheng, Jinde
    COATINGS, 2022, 12 (06)
  • [3] Bearing Fault Diagnosis Method Based on Multisensor Hybrid Feature Fusion
    Wang, Daichao
    Zhang, Yue
    Zhang, Hongbo
    Zhuang, Yinghao
    Gao, Shengyao
    Li, Yibin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [4] Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
    Zhu, Huibin
    He, Zhangming
    Wei, Juhui
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2021, 21 (07)
  • [5] Bearing Fault Diagnosis Based on Multisensor Information Coupling and Attentional Feature Fusion
    Wan, Shaoke
    Li, Tianqi
    Fang, Bin
    Yan, Ke
    Hong, Jun
    Li, Xiaohu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection
    Buchaiah, Sandaram
    Shakya, Piyush
    MEASUREMENT, 2022, 188
  • [7] Fault diagnosis theory: Method and application based on multisensor data fusion
    Wang, HF
    Wang, JP
    JOURNAL OF TESTING AND EVALUATION, 2000, 28 (06) : 513 - 518
  • [8] Bearing fault diagnosis based on feature fusion
    Liu, Fan
    Zhang, Yansheng
    Hu, Zebiao
    Li, Xin
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 771 - 774
  • [9] A fault pulse extraction and feature enhancement method for bearing fault diagnosis
    Chen, Zhiqiang
    Guo, Liang
    Gao, Hongli
    Yu, Yaoxiang
    Wu, Wenxin
    You, Zhichao
    Dong, Xun
    MEASUREMENT, 2021, 182
  • [10] Rolling bearing composite fault diagnosis method based on eemd fusion feature
    Zhao, Yixin
    Fan, Yao
    Li, Hu
    Gao, Xuejin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (09) : 4563 - 4570