Credit card fraud detection using decision tree for tracing email and IP

被引:0
|
作者
Dhanapal, R. [1 ]
Gayathiri, P. [2 ]
机构
[1] Department of Computer Applications, Eswari Engineering College, Chennai-600089, India
[2] Research Scholar in Manonmaniam Sundaranar University, Department of Computer Science, Kanchi Sri Krishna College, Kanchipuram, India
来源
关键词
Electronic mail - Data mining - Crime;
D O I
暂无
中图分类号
学科分类号
摘要
Credit card fraud is a wide-ranging term for theft and fraud committed using a credit card or any similar payment mechanism as a fraudulent source of funds in a transaction. The purpose may be to obtain goods without paying, or to obtain unauthorized funds from an account. Transactions completed with credit cards seem to become more and more popular with the introduction of online shopping and banking. Correspondingly, the number of credit card frauds has also increased. Currently; data mining is a popular way to combat frauds because of its effectiveness. Data mining is a welldefined procedure that takes data as input and produces output in the forms of models or patterns. In other words, the task of data mining is to analyze a massive amount of data and to extract some usable information that we can interpret for future uses. Frauds has also increased .Currently, data mining is a popular way to combat frauds because of its effectiveness. Data mining is a well-defined procedure that takes data as input and produces output in the forms of models or patterns. In other words, the task of data mining is to analyze a massive amount of data and to extract some usable information that we can interpret for future uses. © 2012 International Journal of Computer Science Issues.
引用
收藏
页码:406 / 412
相关论文
共 50 条
  • [1] A Survey and a Credit Card Fraud Detection and Prevention Model using the Decision Tree Algorithm
    Alraddadi, Abdulaziz Saleh
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11505 - 11510
  • [2] Credit Card Fraud Detection Using CNN
    Murugan, Yogamahalakshmi
    Vijayalakshmi, M.
    Selvaraj, Lavanya
    Balaraman, Saranya
    INTERNET OF THINGS AND CONNECTED TECHNOLOGIES, 2022, 340 : 194 - 204
  • [3] The Application of Decision Tree in Anti-Fraud Management of Credit Card
    Wen Jie
    Long Fei
    Dong Huailin
    Zhang Jingjing
    ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2008, : 1111 - 1115
  • [4] Credit Card Fraud Detection
    Tiwari, Mohit
    Sharma, Vipul
    Bala, Devashish
    Devansh
    Kaushal, Dishant
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 1778 - 1789
  • [5] Credit Card Fraud Detection Using Capsule Network
    Wang, Shuo
    Liu, Guanjun
    Li, Zhenchuan
    Xuan, Shiyang
    Yan, Chungang
    Jiang, Changjun
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3679 - 3684
  • [6] Credit Card Fraud Detection Using Anomaly Techniques
    Sharmila, V. Ceronmani
    Kumar, Kiran R.
    Sundaram, R.
    Samyuktha, D.
    Harish, R.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [7] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [8] Credit Card Fraud Detection Using XGBoost Algorithm
    Abdulghani, Ahmed Qasim
    Ucan, Osman Nuri
    Alheeti, Khattab M. Ali
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 487 - 492
  • [9] Using Neural Network for Credit Card Fraud Detection
    Georgieva, Sevdalina
    Markova, Maya
    Pavlov, Velizar
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [10] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270