Construction of an S-scheme AgBr/BiOBr heterojunction by in situ hydrolysis for highly efficient photocatalytic reduction of CO2 into CO

被引:0
|
作者
Shen, Mingzhi [1 ,2 ]
Cai, Xiaolong [1 ,2 ,3 ]
Cao, Baowei [1 ,2 ]
Cao, Jingbo [4 ]
Zhao, Peng [1 ,2 ]
Xu, Yunhua [1 ,2 ,3 ]
机构
[1] Yulin Univ, Coll New Energy, Yulin 719000, Peoples R China
[2] Yulin Univ, Coll Chem & Chem Engn, Yulin 719000, Peoples R China
[3] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[4] Xian Univ Architecture & Technol, Dept Elect & Mech Engn, Xian 710055, Peoples R China
关键词
Photocatalysis; AgBr/BiOBr; CO; 2; reduction; S -scheme heterojunction; DEGRADATION; MECHANISM; PERFORMANCE; INTERFACE; BIOBR; CH4;
D O I
10.1016/j.jallcom.2024.176905
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To improve the performance of CO2 2 photoreduction to CO, S-scheme AgBr/BiOBr heterojunctions with strong interfacial interactions were prepared using a simple in situ hydrolysis strategy by regulating the stoichiometric ratio of BiOBr and AgNO3. 3 . Furthermore, the synthesized AgBr/BiOBr heterojunctions were subjected to microstructure analysis and electrochemical properties testing. The experimental date show that AgBr/BiOBr heterojunctions, which have tight interfacial contact characteristics, boost visible light utilization and facilitate the separation and shift of photogenerated carriers, leading to strong CO2 2 redox capability. Among the AgBr/BiOBr heterojunctions, the AB-2 specimen has the best selectivity for the product CO. The rate of CO2 2 photoreduction to CO for AB-2 is 25.36 mu mol center dot g-- 1 center dot h- 1 , which is about 2.48 and 11.91 times higher than those of acquired BiOBr and AgBr, respectively. After several cycles, it still exhibits high stability. Furthermore, the electric charge transfer and CO2 2 reduction mechanism for the S-scheme AgBr/BiOBr heterojunction were investigated. A promising method for the construction of efficient photoreduction CO2 2 catalyst is proposed in this study.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
    Miao, Zerui
    Wang, Qingli
    Zhang, Yanfeng
    Meng, Lingpeng
    Wang, Xuxu
    Applied Catalysis B: Environmental, 2022, 301
  • [2] In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
    Miao, Zerui
    Wang, Qingli
    Zhang, Yanfeng
    Meng, Lingpeng
    Wang, Xuxu
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
  • [3] In-situ preparation of BiOBr/Bi-doped CsPbBr3 S-scheme heterojunction for efficient photocatalytic CO2 reduction
    Zhu, Qiliang
    Huang, Wenxuan
    Shen, Jianhua
    Jiang, Haibo
    Zhu, Yihua
    Li, Chunzhong
    Chemical Engineering Journal, 1600, 499
  • [4] WO3/BiOBr S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO2 Reduction
    Li, Chen
    Lu, Xingyu
    Chen, Liuyun
    Xie, Xinling
    Qin, Zuzeng
    Ji, Hongbing
    Su, Tongming
    MATERIALS, 2024, 17 (13)
  • [5] Construction of a hierarchical BiOBr/C3N4 S-scheme heterojunction for selective photocatalytic CO2 reduction towards CO
    Tao, Wei
    Tang, Qiaoya
    Hu, Jianqiang
    Wang, Zhipeng
    Jiang, Baojiang
    Xiao, Yuting
    Song, Renjie
    Guo, Shien
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24999 - 25007
  • [6] Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduction of CO2 to CO under visible light
    Xie, Yu
    Zhou, Yipeng
    Gao, Chenmei
    Liu, Lianjun
    Zhang, Yifan
    Chen, Yong
    Shao, Yi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 303
  • [7] In-situ preparation of BiOBr/Bi-doped CsPbBr3 3 S-scheme heterojunction for efficient photocatalytic CO2 2 reduction
    Zhu, Qiliang
    Huang, Wenxuan
    Shen, Jianhua
    Jiang, Haibo
    Zhu, Yihua
    Li, Chunzhong
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [8] BiOBr/NiO S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction
    Wang, Zhongliao
    Cheng, Bei
    Zhang, Liuyang
    Yu, Jiaguo
    Tan, Haiyan
    SOLAR RRL, 2022, 6 (01)
  • [9] S-scheme heterojunction photocatalysts for CO2 reduction
    Wang, Linxi
    Zhu, Bicheng
    Zhang, Jianjun
    Ghasemi, Jahan B.
    Mousavi, Mitra
    Yu, Jiaguo
    MATTER, 2022, 5 (12) : 4187 - 4211
  • [10] S-Scheme Heterojunction Photocatalysts for CO2 Reduction
    Li, Mingli
    Cui, He
    Zhao, Yi
    Li, Shunli
    Wang, Jiabo
    Ge, Kai
    Yang, Yongfang
    CATALYSTS, 2024, 14 (06)