Automated identification of callbacks in Android framework using machine learning techniques

被引:0
|
作者
Chen X. [1 ,2 ]
Mu R. [3 ]
Yan Y. [3 ]
机构
[1] University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing
[2] Institute of Microelectronics of Chinese Academy of Sciences, Kunshan Branch, 1699 Zuchongzhi, Kunshan
[3] Institute of Microelectronics of Chinese Academy of Sciences, 3 Beitucheng West Road, Chaoyang District, Beijing
关键词
Android; Android framework; Callbacks identification; Cross-validation; Machine learning; Malware; Mobile application security; Privacy; Static analysis; Support vector machine; SVM;
D O I
10.1504/IJES.2018.093688
中图分类号
学科分类号
摘要
The number of malicious Android applications has grown explosively, leaking massive privacy sensitive information. Nevertheless, the existing static code analysis tools relying on imprecise callbacks list will miss high numbers of leaks, which is demonstrated in the paper. This paper presents a machine learning approach to identifying callbacks automatically in Android framework. As long as it is given a training set of hand-annotated callbacks, the proposed approach can detect all of them in the entire framework. A series of experiments are conducted to identify 20,391 callbacks on Android 4.2. This proposed approach, verified by a ten-fold cross-validation, is effective and efficient in terms of precision and recall, with an average of more than 91%. The evaluation results shows that many of newly discovered callbacks are indeed used, which furthermore confirms that the approach is suitable for all Android framework versions. Copyright © 2018 Inderscience Enterprises Ltd.
引用
收藏
页码:301 / 312
页数:11
相关论文
共 50 条
  • [1] Automated identification of callbacks in Android framework using machine learning techniques
    Chen, Xiupeng
    Mu, Rongzeng
    Yan, Yuepeng
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2018, 10 (04) : 301 - 312
  • [2] MLDroid—framework for Android malware detection using machine learning techniques
    Arvind Mahindru
    A. L. Sangal
    Neural Computing and Applications, 2021, 33 : 5183 - 5240
  • [3] MLDroid-framework for Android malware detection using machine learning techniques
    Mahindru, Arvind
    Sangal, A. L.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5183 - 5240
  • [4] An empirical framework for defect prediction using machine learning techniques with Android software
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2016, 49 : 1034 - 1050
  • [5] Android Malware Characterization Using Metadata and Machine Learning Techniques
    Martin, Ignacio
    Alberto Hernandez, Jose
    Munoz, Alfonso
    Guzman, Antonio
    SECURITY AND COMMUNICATION NETWORKS, 2018,
  • [6] Effectiveness of machine learning techniques for automated identification of calling communities
    Kianmehr, Keivan
    Alhajj, Reda
    PROCEEDINGS OF THE 12TH INTERNATIONAL INFORMATION VISUALISATION, 2008, : 308 - 313
  • [7] A HIERARCHICAL MACHINE LEARNING FRAMEWORK FOR THE IDENTIFICATION OF AUTOMATED CONSTRUCTION OPERATIONS
    Harichandran, Aparna
    Raphael, Benny
    Mukherjee, Abhijit
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2021, 26 : 591 - 623
  • [8] Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques
    Yu, Felix
    Croso, Gianluca Silva
    Kim, Tae Soo
    Song, Ziang
    Parker, Felix
    Hager, Gregory D.
    Reiter, Austin
    Vedula, S. Swaroop
    Ali, Haider
    Sikder, Shameema
    JAMA NETWORK OPEN, 2019, 2 (04) : e191860
  • [9] Paraphrase Identification using Machine Learning Techniques
    Chitra, A.
    Kumar, C. S. Saravana
    RECENT ADVANCES IN NETWORKING, VLSI AND SIGNAL PROCESSING, 2010, : 245 - +
  • [10] Automated malware detection using machine learning and deep learning approaches for android applications
    Poornima S.
    Mahalakshmi R.
    Measurement: Sensors, 2024, 32