Unconstrained face recognition using deep convolution neural network

被引:0
|
作者
Agrawal A.K. [1 ]
Singh Y.N. [2 ]
机构
[1] Apollo Institute of Technology, Sundhela, Sarsaul, Uttar Pradesh,Kanpur
[2] Institute of Engineering and Technology, Dr APJ Abdul Kalam Technical University, Uttar Pradesh, Lucknow
关键词
Cnn; Deep convolution neural network; Face recognition; Unconstrained environment;
D O I
10.1504/IJICS.2020.105183
中图分类号
学科分类号
摘要
Different methods have been proposed for face recognition during the past decades that differ essentially on how to determine discriminant facial features for better recognition. Recently, very deep neural networks achieved great success on general object recognition because of their potential in learning capability. This paper presents convolution neural network (CNN)-based architecture for face recognition in unconstrained environment. The proposed architecture is based on a standard architecture of residual network. The recognition performance shows that the proposed framework of CNN achieves the state-of-Art performance on publicly available challenging datasets LFW, face94, face95, face96 and Grimace. © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:332 / 348
页数:16
相关论文
共 50 条
  • [1] Face Recognition System in Unconstrained Environment through Convolution Neural Network
    Agrawal, Amrit Kumar
    Singh, Yogendra Narain
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 506 - 511
  • [2] The Dropout Method of Face Recognition Using a Deep Convolution Neural Network
    Yi Dian
    Shi Xiaohong
    Xu Hao
    2018 INTERNATIONAL SYMPOSIUM IN SENSING AND INSTRUMENTATION IN IOT ERA (ISSI), 2018,
  • [3] Compressed Deep Convolution Neural Network for Face Recognition
    Zou, Ying
    Liu, Xiaohong
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 110 - 114
  • [4] A Deep Convolution Neural Network Model for Vehicle Recognition and Face Recognition
    Luo, Xingcheng
    Shen, Ruihan
    Hu, Jian
    Deng, Jianhua
    Hu, Linji
    Guan, Qing
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 715 - 720
  • [5] Human Face Recognition Based on Adaptive Deep Convolution Neural Network
    Chen Liang
    Guo Xiaojie
    Geng Chenlu
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6967 - 6970
  • [6] Face Recognition Using LBPH Descriptor and Convolution Neural Network
    Shoba, V. Betcy Thanga
    Sam, I. Shatheesh
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1439 - 1444
  • [7] Face Recognition Based on Convolution Neural Network
    Yan, Kewen
    Huang, Shaohui
    Song, Yaoxian
    Liu, Wei
    Fan, Neng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4077 - 4081
  • [8] Recognition of handwritten characters using deep convolution neural network
    Arivazhagan, S.
    Arun, M.
    Rathina, D.
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2021, 49 (04): : 503 - 511
  • [9] Snow Leopard Recognition Using Deep Convolution Neural Network
    Tariq, Naveed
    Saleem, Khalid
    Mushtaq, Mubashar
    Nawaz, Muhammad Ali
    2ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2018), 2018, : 29 - 33
  • [10] Face Recognition using Deep Neural Network with "LivenessNet"
    Jafri, Samana
    Chawan, Satish
    Khan, Afifa
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 145 - 148