A family of expanding integrable models of AKNS hierarchy of equations

被引:0
|
作者
Guo, Fu-Kui
Zhang, Yu-Feng
机构
[1] Department of Applied Mathematics, Shandong Univ. of Sci. and Technol., Taian 271019, China
[2] Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
来源
Wuli Xuebao/Acta Physica Sinica | 2002年 / 51卷 / 05期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A family of expanding integrable models of AKNS hierarchy of equations
    Guo, FK
    Zhang, YF
    ACTA PHYSICA SINICA, 2002, 51 (05) : 951 - 954
  • [2] A family of S-mKdV hierarchy of equations and its expanding integrable models
    Zhang, YF
    Yan, QY
    Zhang, HQ
    ACTA PHYSICA SINICA, 2003, 52 (01) : 5 - 11
  • [3] The Hamiltonian structure of the expanding integrable model of the generalized AKNS hierarchy
    Feng, Binlu
    Han, Bo
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 271 - 276
  • [4] A New Integrable hierarchy and the resulting expanding integrable models
    Guo Xiurong
    Liu Zhengtao
    Guo Mei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 2851 - +
  • [5] AN INTEGRABLE COUPLING OF THE GENERALIZED AKNS HIERARCHY
    张玉峰
    闫庆友
    Annals of Differential Equations, 2002, (04) : 431 - 437
  • [6] Integrable couplings of a generalized AKNS hierarchy
    张玉峰
    张鸿庆
    闫庆友
    Journal of Central South University of Technology(English Edition), 2002, (03) : 220 - 223
  • [7] Integrable couplings of a generalized AKNS hierarchy
    Zhang, YF
    Zhang, HQ
    Yan, QY
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2002, 9 (03): : 220 - 223
  • [8] Integrable couplings of a generalized AKNS hierarchy
    Yu-feng Zhang
    Hong-qing Zhang
    Qing-you Yan
    Journal of Central South University of Technology, 2002, 9 : 220 - 223
  • [9] A class of integrable expanding model for the coupled AKNS-Kaup-Newell soliton hierarchy
    Yang, HX
    Xu, XX
    CHINESE PHYSICS, 2005, 14 (05): : 869 - 874
  • [10] An integrable hierarchy including the AKNS hierarchy and its strict version
    G. F. Helminck
    Theoretical and Mathematical Physics, 2017, 192 : 1324 - 1336