HiTailor: Interactive Transformation and Visualization for Hierarchical Tabular Data

被引:0
|
作者
Li G. [1 ]
Li R. [1 ]
Wang Z. [1 ]
Liu C.H. [1 ]
Lu M. [2 ]
Wang G. [1 ]
机构
[1] Beijing Institute of Technology, China
[2] Shenzhen University, China
关键词
data transformation; hierarchical tabular data; tabular data; tabular visualization;
D O I
10.1109/TVCG.2022.3209354
中图分类号
学科分类号
摘要
Tabular visualization techniques integrate visual representations with tabular data to avoid additional cognitive load caused by splitting users' attention. However, most of the existing studies focus on simple flat tables instead of hierarchical tables, whose complex structure limits the expressiveness of visualization results and affects users' efficiency in visualization construction. We present HiTailor, a technique for presenting and exploring hierarchical tables. HiTailor constructs an abstract model, which defines row/column headings as biclustering and hierarchical structures. Based on our abstract model, we identify three pairs of operators, Swap/Transpose, ToStacked/ToLinear, Fold/Unfold, for transformations of hierarchical tables to support users' comprehensive explorations. After transformation, users can specify a cell or block of interest in hierarchical tables as a TableUnit for visualization, and HiTailor recommends other related TableUnits according to the abstract model using different mechanisms. We demonstrate the usability of the HiTailor system through a comparative study and a case study with domain experts, showing that HiTailor can present and explore hierarchical tables from different viewpoints. HiTailor is available at https://github.com/bitvis2021/HiTailor. © 2022 IEEE.
引用
收藏
页码:139 / 148
页数:9
相关论文
共 50 条
  • [1] Interactive Visualization of Counterfactual Explanations for Tabular Data
    Guyomard, Victor
    Fessant, Francoise
    Guyet, Thomas
    Bouadi, Tassadit
    Termier, Alexandre
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 330 - 334
  • [2] Tabular Data Visualization Interactive Construction for Analysis Tasks
    Ma N.
    Yuan X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (10): : 1628 - 1636
  • [3] Variational Circular Treemaps for Interactive Visualization of Hierarchical Data
    Zhao, Haisen
    Lu, Lin
    2015 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2015, : 81 - 85
  • [4] Scalable, interactive and hierarchical visualization of virus taxonomic data
    Balakavi, Kashyap
    Janga, Rushitha
    Shovon, Aluncdur Ralunan
    Dcmpscy, Don
    Lefkowitz, Elliot
    Kumar, Sidharth
    2023 WORKSHOP ON VISUAL ANALYTICS IN HEALTHCARE, VAHC, 2023, : 34 - 40
  • [5] Interactive visualization and analysis of hierarchical neural projections for data mining
    König, A
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 615 - 624
  • [6] Interactive Segmentation and Visualization of DTI Data Using a Hierarchical Watershed Representation
    Jalba, Andrei C.
    Westenberg, Michel A.
    Roerdink, Jos B. T. M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (03) : 1025 - 1035
  • [7] Interactive data visualization
    Alexander, Joanna, 1600, (05):
  • [8] TabularVis - A Circos-inspired Interactive Web Client based Tool for Improving the Clarity of Tabular Data Visualization
    Papp, Gyorgy
    Kunkli, Roland
    VISIGRAPP 2018: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS / INTERNATIONAL CONFERENCE ON INFORMATION VISUALIZATION THEORY AND APPLICATIONS (IVAPP), VOL 3, 2018, : 120 - 131
  • [9] Intent-Aware Visualization Recommendation for Tabular Data
    Maruta, Atsuki
    Kato, Makoto P.
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 252 - 266
  • [10] AdaVis: Adaptive and Explainable Visualization Recommendation for Tabular Data
    Zhang, Songheng
    Li, Haotian
    Qu, Huamin
    Wang, Yong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (09) : 5923 - 5938