Immersed borders approach for fluid-structure interaction

被引:0
|
作者
Kkaled C. [1 ]
Ahmed S. [2 ]
Sahli S. [3 ]
机构
[1] Laboratoire de recherche des technologies industrielles, Université Ibn Khaldoun de Tiaret, Département de Génie Mécanique, BP 78, Route de Zaroura, Tiaret
[2] Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie d'Oran (USTO MB), Oran
[3] Université d'Oran 2 Mohamed Ben Ahmed, Oran
来源
Ahmed, Sahli (mechanics184@yahoo.com) | 1600年 / Lavoisier卷 / 41期
关键词
Generalized finite element method; Incompressible flows; Mobile interfaces;
D O I
10.3166/ACSM.41.109-126
中图分类号
学科分类号
摘要
In this paper, a formulation using the Generalized Finite Element Method (GFEM) in conjunction with Lagrange Multipliers is proposed to impose the boundary condition on the interface of the Fluid-Structure Interaction (FSI) problem. The objective of this work is the development of an efficient and robust computational code for solving problems of Fluid Mechanics and FSI. We chose a formulation of Immersed Borders to allow simulations of problems involving complex movements and transformations of the structure. In problems with these characteristics, classical ALE approaches tend to lose robustness because of the need for fluid mesh reconstruction to avoid excessive distortion of the elements. Examples of future applications are biomechanics, aeroelasticity of civil works and aerospace and multiphysical structures. The numerical examples solved proved that the formulation and implementation in finite elements developed in this work are capable to solve problems of 2D flow of fluids described by the Navier-Stokes equation for incompressible flows, even in regimes with dominant convection; and, to simulate the fluid problems with mobile interfaces using the concept of boundaries immersed in two dimensions. © 2017 Lavoisier.
引用
收藏
页码:109 / 126
页数:17
相关论文
共 50 条
  • [1] Immersed Methods for Fluid-Structure Interaction
    Griffith, Boyce E.
    Patankar, Neelesh A.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 : 421 - 448
  • [2] Immersed particle method for fluid-structure interaction
    Rabczuk, Timon
    Gracie, Robert
    Song, Jeong-Hoon
    Belytschko, Ted
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (01) : 48 - 71
  • [3] On continuum immersed strategies for Fluid-Structure Interaction
    Hesch, C.
    Gil, A. J.
    Carreno, A. Arranz
    Bonet, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 247 : 51 - 64
  • [4] Immersed boundary methods for fluid-structure interaction: A review
    Kim, Woojin
    Choi, Haecheon
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2019, 75 : 301 - 309
  • [5] Implicit immersed boundary method for fluid-structure interaction
    Cai, Shang-Gui
    Ouahsine, Abdellatif
    Favier, Julien
    Hoarau, Yannick
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2017, (01): : 33 - 36
  • [6] Immersed boundary methods for simulating fluid-structure interaction
    Sotiropoulos, Fotis
    Yang, Xiaolei
    PROGRESS IN AEROSPACE SCIENCES, 2014, 65 : 1 - 21
  • [7] Fluid-structure interaction with an application to a body immersed and anchored in a fluid flow
    Benaouicha M.
    Hamdouni A.
    International Applied Mechanics, 2011, 47 (3) : 338 - 349
  • [8] Fluid-structure interaction with a Finite Element-Immersed Boundary approach for compressible flows
    Morales, Freddy Alejandro Portillo
    Serfaty, Ricardo
    Vedovotto, Joao Marcelo
    Cavallini Jr, Aldemir
    Villar, Millena Martins
    da Silveira Neto, Aristeu
    OCEAN ENGINEERING, 2023, 290
  • [9] A mortar approach for Fluid-Structure interaction problems: Immersed strategies for deformable and rigid bodies
    Hesch, C.
    Gil, A. J.
    Carreno, A. Arranz
    Bonet, J.
    Betsch, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 278 : 853 - 882
  • [10] An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems
    Nicholas Jenkins
    Kurt Maute
    Structural and Multidisciplinary Optimization, 2016, 54 : 1191 - 1208