Channel2DTransformer: A Multi-level Features Self-attention Fusion Module for Semantic Segmentation

被引:0
|
作者
Liu, Weitao [1 ]
Wu, Junjun [1 ]
机构
[1] Foshan Univ, Guangdong Prov Key Lab Ind Intelligent Inspection, Foshan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Semantic segmentation; Channel2DTransformer; Self-attention; Deep learning;
D O I
10.1007/s44196-024-00630-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation is a crucial technology for intelligent vehicles, enabling scene understanding in complex driving environments. However, complex real-world scenarios often contain diverse multi-scale objects, which bring challenges to the accurate semantic segmentation. To address this challenge, we propose a multi-level features self-attention fusion module called Channel2DTransformer. The module utilizes self-attention mechanisms to dynamically fuse multi-level features by computing self-attention weights between their channels, resulting in a consistent and comprehensive representation of scene features. We perform the module on the Cityscapes and NYUDepthV2 datasets, which contain a large number of multi-scale objects. The experimental results validate the positive contributions of the module in enhancing the semantic segmentation accuracy of multi-scale objects and improving the performance of semantic segmentation in complex scenes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-attention feature fusion network for semantic segmentation
    Zhou, Zhen
    Zhou, Yan
    Wang, Dongli
    Mu, Jinzhen
    Zhou, Haibin
    NEUROCOMPUTING, 2021, 453 : 50 - 59
  • [2] Retinal blood vessel segmentation and inpainting networks with multi-level self-attention
    Golias, Matus
    Sikudova, Elena
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [3] An Efficient Module for Instance Segmentation Based on Multi-Level Features and Attention Mechanisms
    Sun, Yingchun
    Gao, Wang
    Pan, Shuguo
    Zhao, Tao
    Peng, Yahui
    APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 16
  • [4] Cascaded feature fusion with multi-level self-attention mechanism for object detection
    Wang, Chuanxu
    Wang, Huiru
    PATTERN RECOGNITION, 2023, 138
  • [5] Multi-level feature fusion capsule network with self-attention for facial expression recognition
    Huang, Zhiji
    Yu, Songsen
    Liang, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [6] Enhanced distance-aware self-attention and multi-level match for sentence semantic matching
    Deng, Yao
    Li, Xianfeng
    Zhang, Mengyan
    Lu, Xin
    Sun, Xia
    NEUROCOMPUTING, 2022, 501 : 174 - 187
  • [7] Channel Attention and Multi-level Features Fusion for Single Image Super-Resolution
    Lu, Yue
    Zhou, Yun
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Yang, Zixuan
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [8] Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
    Zhou, Yan
    Zhou, Haibin
    Yang, Yin
    Li, Jianxun
    Irampaye, Richard
    Wang, Dongli
    Zhang, Zhengpeng
    VISUAL COMPUTER, 2024, : 3109 - 3128
  • [9] Automatic segmentation of golden pomfret based on fusion of multi-head self-attention and channel-attention mechanism
    Yu, Guoyan
    Luo, Yingtong
    Deng, Ruoling
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [10] Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion
    Shen, Peiquan
    Mei, Liye
    Ye, Zhaoyi
    Wang, Ying
    Zhang, Qi
    Hong, Bo
    Yin, Xiliang
    Yang, Wei
    ELECTRONICS, 2023, 12 (13)