Picard and Adomian decomposition methods for a fractional quadratic integral equation via ζ-generalized ξ-fractional integral.

被引:0
|
作者
Abdulqader, Alan Jalal [1 ]
Redhwan, Saleh S. [2 ]
Ali, Ali Hasan [3 ]
Bazighifan, Omar [4 ]
Alabdala, Awad T. [5 ]
机构
[1] Mathematical Department, College of Education, Al-Mustansiriyah University, Iraq
[2] School of Mathematical Sciences, Zhejiang Normal University, Jinhua, China
[3] Institute of Mathematics, University of Debrecen, Pf. 400, Debrecen,H-4002, Hungary
[4] Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, Roma,00186, Italy
[5] Management Department - Université Française d’Égypte, Egypt
关键词
Fixed point arithmetic;
D O I
10.52866/ijcsm.2024.05.03.008
中图分类号
学科分类号
摘要
The primary focus of this paper is to thoroughly examine and analyze a class of a fractional quadratic integral equation via ζ-generalized ξ-fractional integral. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the fractional quadratic integral equation, effectively transforming the given equation into an equivalent fixed-point problem. By applying the Banach fixed-point theorems, we prove the uniqueness of solutions to fractional quadratic integral equation. Additionally, The Adomian decomposition method is used, to solve the resulting fractional quadratic integral equation. This technique rapidly provides convergent successive approximations of the exact solution to the given fractional quadratic integral equation, therefore, we investigate the convergence of approximate solutions, using the Adomian decomposition method. Finally, we provide some examples, to demonstrate our results. Our findings contribute to the current understanding of fractional quadratic integral equation and their solutions and have the potential to inform future research in this area. © 2024 College of Education, Al-Iraqia University. All rights reserved.
引用
收藏
页码:170 / 180
相关论文
共 50 条
  • [1] Picard and Adomian decomposition methods for a quadratic integral equation of fractional order
    El-Sayed, A. M. A.
    Hashem, H. H. G.
    Ziada, E. A. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (01): : 95 - 109
  • [2] Picard and Adomian decomposition methods for a quadratic integral equation of fractional order
    A. M. A. El-Sayed
    H. H. G. Hashem
    E. A. A. Ziada
    Computational and Applied Mathematics, 2014, 33 : 95 - 109
  • [3] Picard and Adomian methods for quadratic integral equation
    El-Sayed, A. M. A.
    Hashem, H. H. G.
    Ziada, E. A. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (03): : 447 - 463
  • [4] Picard and adomian methods for quadratic integral equation
    El-Sayed A.M.A.
    Hashem H.H.G.
    Ziada E.A.A.
    Computational and Applied Mathematics, 2010, 29 (03) : 447 - 463
  • [5] Investigating a Generalized Fractional Quadratic Integral Equation
    Abood, Basim N.
    Redhwan, Saleh S.
    Bazighifan, Omar
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [6] Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods
    Ziada, Eman A. A.
    Hashem, Hind
    Al-Jaser, Asma
    Moaaz, Osama
    Botros, Monica
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 5943 - 5965
  • [7] On quadratic integral equation of fractional orders
    Darwish, MA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (01) : 112 - 119
  • [8] A Generalized ML-Hyers-Ulam Stability of Quadratic Fractional Integral Equation
    Kaabar, Mohammed K. A.
    Kalvandi, Vida
    Eghbali, Nasrin
    Samei, Mohammad Esmael
    Siri, Zailan
    Martinez, Francisco
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 414 - 427
  • [9] On an integral and consequent fractional integral operators via generalized convexity
    He, Wenfeng
    Farid, Ghulam
    Mahreen, Kahkashan
    Zahra, Moquddsa
    Chen, Nana
    AIMS MATHEMATICS, 2020, 5 (06): : 7632 - 7648
  • [10] Monotonic solutions of a perturbed quadratic fractional integral equation
    Darwish, Mohamed Abdalla
    Ntouyas, Sotiris K.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5513 - 5521