Design of piezoelectric quasi- zero-stiffness metastructures for improved low-frequency vibration isolation

被引:0
|
作者
Jiang, Shouqian [1 ]
Liu, Zhiyuan [1 ]
Yi, Kaijun [1 ]
Zhu, Rui [1 ]
Kovacic, Ivana [2 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Univ Novi Sad, Ctr Excellence Vibroacoust Syst & Signal Proc, Fac Tech Sci, Novi Sad, Serbia
基金
中国国家自然科学基金;
关键词
piezoelectric; quasi-zero stiffness; metastructure; vibration isolation; digital circuit; SYNTHETIC IMPEDANCE; SYSTEM;
D O I
10.1088/1361-665X/ad811b
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, a novel type of piezoelectric quasi-zero stiffness (QZS) metastructure is proposed and the improved vibration isolation performance is investigated. A piezoelectric QZS metastructure is composed of curved beams covered with piezoelectric macro-fiber composite patches, to which digital circuits are connected. Based on the principle of minimum potential energy and the mode superposition method, the constrain on the geometry and material parameters of the piezo-curved beams to achieve QZS is given. According to this design criterion, 1D, 2D and 3D piezoelectric QZS metastructures are designed, and their improved low-frequency vibration isolation characteristics are comprehensively analyzed through theoretical, numerical and experimental studies. It is demonstrated that by optimizing the parameters of the resonant transfer functions implemented in the digital circuits, high-level damping localized near the first resonant peak can be introduced into the curved beams. As a result, the resonant peaks of the metastructures can be reduced without compromising the isolation performance beyond those peaks.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Design of hyperbolic quasi-zero stiffness metastructures coupled with nonlinear stiffness for low-frequency vibration isolation
    Zhang, Xiaolong
    Lu, Xuhao
    Li, Changcheng
    Tian, Ruilan
    Chen, Luqi
    Wang, Minghao
    ENGINEERING STRUCTURES, 2024, 312
  • [2] Topology optimization of programable quasi-zero-stiffness metastructures for low-frequency vibration isolation
    Xu, Yuqi
    Dong, Hao-Wen
    Wang, Yue-Sheng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 280
  • [3] Design of metastructures with quasi-zero dynamic stiffness for vibration isolation
    Fan, Haigui
    Yang, Lijuan
    Tian, Yuchen
    Wang, Zewu
    COMPOSITE STRUCTURES, 2020, 243
  • [4] Machine Learning-Driven Design Optimization of Buckling-Induced Quasi-Zero Stiffness Metastructures for Low-Frequency Vibration Isolation
    Hong, Hyunsoo
    Kim, Wonki
    Kim, Wonvin
    Jeong, Jae-moon
    Kim, Samuel
    Kim, Seong Su
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (14) : 17965 - 17972
  • [5] Low-frequency vibration isolation via new wide range zero-stiffness isolator with multiple negative stiffness mechanisms
    Wei, Chunyu
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [6] Low-frequency vibration isolation via new wide range zero-stiffness isolator with multiple negative stiffness mechanisms
    Chunyu Wei
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [7] Dynamic research on a low-frequency vibration isolation system of quasi-zero stiffness
    Jurevicius, M.
    Vekteris, V.
    Viselga, G.
    Turla, V
    Kilikevicius, A.
    Iljin, I.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2019, 38 (02) : 684 - 691
  • [8] Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation
    Zhang, Chen
    He, Junsen
    Zhou, Guiqian
    Wang, Kai
    Xu, Daolin
    Zhou, Jiaxi
    MECHANISM AND MACHINE THEORY, 2023, 181
  • [9] An Origami-Inspired Quasi-zero Stiffness Structure for Low-Frequency Vibration Isolation
    Zeng, Peng
    Yang, Yuanhan
    Huang, Long
    Yin, Lairong
    Liu, Bei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (04) : 1463 - 1475
  • [10] A quasi-zero stiffness mechanism with monolithic flexible beams for low-frequency vibration isolation
    Hou, Shuai
    Wei, Jianzheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 210