Learnable GAN Regularization for Improving Training Stability in Limited Data Paradigm

被引:0
|
作者
机构
[1] Singh, Nakul
[2] Sandhan, Tushar
来源
Singh, Nakul (nakul692k@gmail.com) | 1600年 / Springer Science and Business Media Deutschland GmbH卷 / 2010 CCIS期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Conference article (CA)
引用
收藏
相关论文
共 50 条
  • [1] Learnable GAN Regularization for Improving Training Stability in Limited Data Paradigm
    Singh, Nakul
    Sandhan, Tushar
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 542 - 554
  • [2] DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data
    Fang, Tiantian
    Sun, Ruoyu
    Schwing, Alex
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] Novel Regularization for Learning the Fuzzy Choquet Integral With Limited Training Data
    Kakula, Siva Krishna
    Pinar, Anthony J.
    Islam, Muhammad Aminul
    Anderson, Derek T.
    Havens, Timothy C.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (10) : 2890 - 2901
  • [4] Learnable Graph Matching: A Practical Paradigm for Data Association
    He, Jiawei
    Huang, Zehao
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4880 - 4895
  • [5] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
    Jiang, Liming
    Dai, Bo
    Wu, Wayne
    Loy, Chen Change
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Inhomogeneous regularization with limited and indirect data
    Han, Jihun
    Lee, Yoonsang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [7] Towards a Better Understanding and Regularization of GAN Training Dynamics
    Nie, Weili
    Patel, Ankit B.
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 281 - 291
  • [8] DM-GAN: CNN hybrid vits for training GANs under limited data
    Yan, Longquan
    Yan, Ruixiang
    Chai, Bosong
    Geng, Guohua
    Zhou, Pengbo
    Gao, Jian
    PATTERN RECOGNITION, 2024, 156
  • [9] Improving FM-GAN Through Mixup Manifold Regularization
    Ghorban, Farzin
    Hasan, Nesreen
    Velten, Joerg
    Kummert, Anton
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [10] Improving Federated Learning on Heterogeneous Data via Serial Pipeline Training and Global Knowledge Regularization
    Luo, Yiyang
    Lu, Ting
    Chang, Shan
    Wang, Bingyue
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 851 - 858