On a posteriori error estimation in the maximum norm

被引:0
|
作者
Boman, Mats [1 ]
机构
[1] Chalmers Univ of Technology, Sweden
关键词
Diffusion - Finite element method - Galerkin methods - Heat convection - Normal distribution - Partial differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this thesis we consider residual-based a posteriori error estimates in the maximum norm for the finite element solution of some partial differential equations. The thesis consists of three papers. The first paper concerns a pointwise a posteriori error estimate for the time dependent obstacle problem. The analysis is based on a penalty formulation of the problem, where the penalty parameter is allowed to vary in space and time. For the discretisation we use the Discontinuous Galerkin method. The proof is based on a maximal regularity estimate for parabolic equations. In the second paper we consider a stationary convection-diffusion problem. For the space discretisation we use the Streamline Diffusion method. We prove a global error estimate in the maximum norm. We also prove a localized version of this result in a special case. In the third paper we combine techniques from the first two papers to prove an a posteriori error estimate in the maximum norm for a time dependent convection-diffusion problem. For the discretisation in time and space we use the Discontinuous Galerkin method combined with the Streamline Diffusion method.
引用
收藏
页码:1 / 15
相关论文
共 50 条
  • [1] MAXIMUM NORM A POSTERIORI ERROR ESTIMATION FOR PARABOLIC PROBLEMS USING ELLIPTIC RECONSTRUCTIONS
    Kopteva, Natalia
    Linss, Torsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1494 - 1524
  • [2] A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS
    Demlow, Alan
    Lakkis, Omar
    Makridakis, Charalambos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2157 - 2176
  • [3] Maximum–norm a posteriori error estimates for an optimal control problem
    Enrique Otárola
    Richard Rankin
    Abner J. Salgado
    Computational Optimization and Applications, 2019, 73 : 997 - 1017
  • [4] A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations
    Liang, Ying
    Liu, Li-Bin
    Cen, Zhongdi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [5] A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations
    Ying Liang
    Li-Bin Liu
    Zhongdi Cen
    Computational and Applied Mathematics, 2020, 39
  • [6] Maximum norm a posteriori error estimates for convection-diffusion problems
    Demlow, Alan
    Franz, Sebastian
    Kopteva, Natalia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) : 2562 - 2584
  • [7] Maximum-norm a posteriori error estimates for an optimal control problem
    Otarola, Enrique
    Rankin, Richard
    Salgado, Abner J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 997 - 1017
  • [8] ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR PARAMETRIC OPERATOR EQUATIONS
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A339 - A363
  • [9] Energy norm a posteriori error estimation for discontinuous Galerkin methods
    Becker, R
    Hansbo, P
    Larson, MG
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) : 723 - 733
  • [10] On A Posteriori Estimation of the Approximation Error Norm for an Ensemble of Independent Solutions
    A. K. Alekseev
    A. E. Bondarev
    Numerical Analysis and Applications, 2020, 13 : 195 - 206